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SUMMARY

This report describes a digital computer code CAVE (Conduction Analysis Via

Eigem?alues), which finds application in the analysis of two-dimensional transient

heating of hypersonic vehicles. The code is an extension of the work reported in NASA
CR-2435 for the inverse conduction problem. CAVE is written in FORTRAN IV and
is operational on both IBM 360-67 and CDC 6600 computers,

are:

The main advantages of CAVE over more conventional thermal analyzer codes

The method of solution is a hybrid analytical-numerical technique that is
inherently stable permitting large tims steps even with the best of
conductors having the finest of mesh size. This method can provide a
factor-of-five reduction in machine time compared to conventional

The aerodynamic heating boundary conditions are calculated by the code
based on the input flight trajectory (i.e., altitude, velocity and angle of
attack as functions of time) rather than calculated external to the code

and then entered as input data.

The code computes the network conduction and convection links, as well
as capacitance values, given basic geometrical and mesh sizes, for four
geometries (leading edges, cooled panels, X-24C structure and slabs).

The output from the code at each time interval includes the steady-state
solution corresponding to the boundary conditions for that time interval.

The code also permits direct input of the heat transfer couplings, node

capacitances and boundary conditions.



This report is primarily a user's manual for the CAVE code. Input and output
formats are presented and explained. Sample problems are included. A brief
summary of the hybrid analytical-numerical technique, which utilizes eigenvalues
(thermal frequencies) and eigenvectors (thermal mode vectors) is given in an
appendix. Other appendixes include the aerodynamic heating equations that have been
incorporated in the code and flow charts.
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Section_ 1
INTRODUCTION

The computer code CAVE (Conductive Analysis Via Eigenvalues) provides a
very convenient and efficient tool for predicting the temperatures within thermal

protection systems for hypersonic vehicles.

The CAVE code is convenient to use because, first, the boundary conditions
(convective heat transfer coefficient and adiabatic wall temperature) are calculated
by thé code based on the input values for altitude, velocity and angle of attack as
functions of time. And, second, because the conduction and convection links between
nodes, and the capacitance of each node are calculated by the code for leading edges,
slabs and cooled panels (Fig. 1). The code also permits direct input of the heat
transfer couplings, node capacitances and boundary conditions for other two-

dimensional problems.

CAVE can be very efficient in the use of computer time because the method
employed to solve the partial differential heat conduction equation is a hybrid
analytical-numerical (HAN) technique. In this method, spatial derivatives are
replaced by appropriate finite difference representations and the temporal deriva-
tives are retained as ordinary derivatives. In effect the problem is subdivided into
a number of uniform temperature systems or nodes that are coupled and changing in
temperature. The problem is thereby specified by a set of first order, linear,
ordinary differential equations. The solution to the set of equations is expressed in
terms of eigenvectors (thermal mode vectors for the system) and eigenvalues (thermal
frequencies of the system). Appendix A gives details of the method. The important
thing to note is that this method is particularly efficient in the use of computer time
when the heat flux response is contained in the first few thermal modes (character-
istic of materials with high thermal diffusivity) or if the response for a large number
of time increments is required, which is precisely the situation in predicting the

temperatures throughout the flight trajectory of a hypersonic vehicle. A reduction by
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a factor of five in computer time can be expected over conventional explicit finite

difference codes for typical flight trajectory analyses. The savings in computer

ue to the HAN method being inherently stable and, therefore, permitting

time is
large time steps.

This report is basically a user's manual for CAVE. Section 2 describes the
overall operation and running of CAVE while Section 3 discusses the details of the
leading edge problem. The input data format is presented and the output from sample
problems is reviewed. Section 4 provides a similar treatment for the slab, cooled
panel and X-24C geometries. Section 5 discusses an arbitrarily shaped geometry. "
The appendixes present such information as the details of the HAN method (Appendix
A), the aerodynamic heating equations (Appendix B), a discussion of the treatment
of radiation (Appendix C), a brief description of the CAVE subroutines (Appendix D),
a discussion of nonlinearities and time dependency of h and T AW (Appendix E), and

a derivation of the eigenvalue/eigenvector solution (Appendix F).

Mr. James L. Hunt, of the High Speed Aerodynamics Division, Langley Re-
search Center, Virginia, served as the NASA technical monitor for the program.

At Grumman, the contract was administered by the Advanced Development
office, under Mr, Fred Berger, Manager of Advanced Development System Engin-
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CR-2435 with co-author George Maise. Mr. Hunt also served as technical monitor

for that program.
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ance in providing the appropriate aerodynamic heating functions. Mr. Timlen also
gave important support by running Grumman's TTA1l computer code to obtain in-

dependent checks on the CAVE code. Mr. Brian Martin developed subroutine
X-24cC,

The many helpful discussions with Dr. Gianky DaForno are gratefully ac-
knowledged.
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Section 2

DESCRIPTION OF CAVE CODE OPERATION

This section provides an overview of the CAVE code capabilities, input/output,

and method of solution.

CAVE has been designed with the convenience of the user in mind. Usual opera-
tion of CAVE requires only the following elemental information from the user:

Selection of one of the built-in configurations of Figure 1 or the general

geometry option

Specification of the surface emissivity and background radiation tempera-
ture for problems involving radiation heat transfer

Specification of the material density, specific heat and thermal conductivity
(the latter two of which can be temperature dependent)

Geometry-type information such as overall dimensions and grid network
sizes

Initial temperature distribution

Flight trajectory, i.e., altitude, velocity and angle of attack as functions
of time in tabular form. This information is used by the code to predict

the aerodynamic heat transfer coefficient, h, and adiabatic wall tempera-

ture, T AW 28 functions of time. Optionally the user may supply tables for
hand T Aw 28 functions of time and distance

Specification of the time step intervals

With the above information specified, the problem solution is accomplished in

the following sequence by the code:

1.

2.

Storage requirements for the various arrays are determined and allocated.

The geometry is discretized into elements and the volumes, conduction areas
and lengths are computed. (A unit depth is assumed by the code.) For the

general geometry problem these quantities are input data.



Then for each time step the following are done:

3. Using the temperature distribution at the start of the time step, the
thermal properties of the materials are determined, followed by the
capacitances and conductances for the network. This step is exercised

just once if the material properties are independent of temperature.

4. Using the flight trajectory data at the start and end of the time step, the
code establishes the time average convective heat transfer coefficient
at each surface node and the corresponding time average adiabatic wall
temperatures. Appendix B gives the particular aerodynamic heating

equations used.

5. The convective heat transfer couplings, due either to aerodynamic heating
or internal coolant flow, at each surface node are then determined by taking
the product of the convective coefficient and the surface area. These coup-
lings are then modified to account for radiation if it is being considered.
Appendix C gives the details of the linearized treatment that is given to the

radiation heat transfer.

At this juncture we may visualize the code as being faced with the task of finding
the solution to the following system of n first-order linear differential equations with

constant coefficients:

dT, _ _
C; Ti=Ky (Ty=T) + H(T

i —

dt

AW, i - Ti) i=1,n Eq. (1)
where Ci = thermal capacitance of node i

Ki' = conductive coupling between nodes i and j

Ti = temperature of node i

Tj = temperature of node j which is adjacent to node i

Hi = convective coupling between node i and the fluid (for interior

nodes Hi =0)
t = time
T AW. i = adiabatic wall temperature of the fluid in contact with node i
]

There are n such coupled differential equations, one for each of the n nodes.
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It may be interesting to digress for a moment to note that the usual thermal
analyzers take equation (1) a step further and replace the ordinary derivative :—tTL
with a finite difference approximation. Depending on the form of the approximation
either an explicit or implicit algorithm is obtained. In the common explicit and
implicit formulations, the Ti's and Tj's are taken to be constant during the time step
interval. In the current HAN method, the ordinary derivative is retained and the Ti's
and Tj's are treated as time-dependent variables in Eq. (1). This leads to a more
accurate solution with no limitation on the time step from a stability standpoint,
However, in solving Eq. (1), the HAN method treats the Ci’ Kij’ Hi and T AW, 1 as
constants. This is necessary, as discussed in Appendix E, for an eigenvalue
solution to exist. The technique used within CAVE to handle variations in these
parameters is to subdivide the total time interval (i.e., the flight trajectory) and

take these parameters to be piecewise constant within each time subinterval.

Thus, the single problem of determining the temperature distribution in the
structure for the entire flight trajectory where the boundary conditions are varying is
solved by considering a number of subproblems where the boundary conditions are
piecewise constant. These subproblems are interconnected in that the temperature at
the end of one time subinterval becomes the initial temperature for the next time
subinterval, It should be noted that the time subintervals, or time steps in the HAN
method, are typically of the order of seconds or tens of seconds which is probably
100 to 1000 times larger than is permissible with the explicit method.

CAVE arithmetically averages the convective coefficient and adiabatic tem-
perature at the beginning and end of the time interval. Therefore in selecting the time
subintervals, the user should be guided by the variation in the flight trajectory with
particular concern for abrupt changes that affect the convective heating. Assuming
the flight trajectory table has been set up with these important points of change, time
subintervals equal to those used in the flight trajectory table will very often prove
satisfactory. For those problems in which the temperature dependency of the
material properties plays a dominant role for some reason, or if radiation heat
transfer is of great importance, a second run with smaller subintervals should
be made to determine the effect of subinterval selection on the predicted tem-
peratures.
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The system of equations given in Eq. (1) has the following exact solution for a

particular time-subinterval (refer to Appendix F):

n
Ti = T°°i + z cij exp ()‘j t) Eq. (2)
=1

where
Ti = temperature at node i at time t seconds into the time subinterval
Tco = steady-state temperature at node i for the particular time subinterval
i
Cij = constants that depend on the T 0’2 set of eigenvectors of a matrix A,

i
and the temperatures of the nodes at the start of the time subinterval

A. = the eigenvalues of a matrix A

t = time into the particular time subinterval. If T represents the time in the
flight trajectory, and if T and T, represent the time at the start and
end of a time subinterval, then the following relationships hold:

0<t<t -Tand T=7T + t for T <t<T
= =% "% s s e

A = symmetric matrix whose elements depend on the Ci’ Kij and Hi of -
Ed. (1). (Refer to Appendixes A and F)

Considering a thermal network with 100 nodes, there are then 100 eigenvalues and
eigenvectors to be determined and used in Eq. (2). Considerable machine time can
be saved by calculating only those eigenvalues and eigenvectors that are "significant"
or "dominant', This was noted very aptly by Maise and Rossi in NASA CR-2435 and
used by them in the CAPE code for the inverse heat transfer problem of finding the
boundary conditions given the temperature history. When the series in Eq. (2) is

truncated to the "dominant" terms, we obtain:

ne

T, = T°°i + Z cij exp (Ajt) Eq. (3)

1
j:



where ne is a number substantially less than n, It represents the number of dominant
~eigenvalues and eigenvectors that will be found and utilized by the code. This is an
input number decided upon by the user. Values of ne from 3 to 5 are recommended
for most problems. Appendix A presents a discussion on this subject.

With this background information, we are in a position to continue with the
sequence that the CAVE code undergoes in finding the temperature history of the struc-
ture throughout the flight trajectory. The next four steps involve matrix subroutines
which for the most part were written and developed under contract NAS 1-11818 by

M. J. Rossi. The sequence then continues from p. 6 as follows:

6. Setup a matrix A in compact form which depends on the Ci’ Kij and Hi of
Eq. (1) (Refer to Appendix F).

7. Obtain the ne dominant eigenvectors and eigenvalues of matrix A using
Jennings* method of simultaneous vector iteration.

8. Determine the steady-state solution to Eq. (1).
9. Calculate the cij ofEq. (3) fori=1, 2,...,nandj=1, 2,...,ne,

10. Calculate the temperatures of the nodes at the end of the time subinterval

using Eq. (3).

11, Set the initial temperatures for the next time subinterval equal to the final
temperature of the present subinterval. Increment the flight trajectory

time.

12. Repeat steps 3 through 11 until the final time has been reached. The
solution is then completed.

The output from CAVE is for the most part self-explanatory and'will be reviewed
in detail in the following sections when sample problems are considered. In essence,
there are three sections to the output. First, there is a partial feedback of the input
data, including: geometric parameters, material properties, flight trajectory, or
convective heat-transfer coefficient and adiabatic wall temperature, as the case may
be, and initial temperature distribution. Secondly, there are the node numbers,
material numbers, capacitances and conductances that were calculated by the code

*A., Jennir_lgs, "A Direct Iteration Method of Obtaining Latent Roots and Vectors of a
Symmetric Matrix,' Proc. Cambridge Phil. Soc., 63, 1967, pp. 755-765.

11
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- for each node. And thirdly, there are printed out for each time subinterval the time

average heat transfer coefficients, heat transfer couplings and adiabatic wall temper-
atures. Also printed out are Mach number, altitude, velocity, angle of attack and
node temperatures at the end of each subinterval. As an aid to the user for a better
feel of the problem being analyzed, the following items are also printed out; the
steady-state temperature distribution for the time subinterval and the time-integrated
heat input to each boundary node.

Although CAVE has been designed to be most convenient for users interested
in predicting structural temperatures of hypersonic vehicles, the code also proves
convenient for analyzing the geometries given in Figure 1, subjected to other than the
normal aerodynamic heating., The user may take advantage of the automatic division
of these geometries by the code and supply the particular boundary conditions of his
problem as input data. CAVE also proves a valuable code for analyzing geometries
other than those given in Figure 1, i.e., whenever the time constant of the system is
small compared to total time of interest. In this case, the HAN method of CAVE

-offers significant machine-time savings compared to conventional methods. Sections

3 and 4 consider in detail the built-in geometries and contain sample cases. Section 5

discusses the general two-dimensional capabilities of CAVE,



Section 3
LEADING EDGE GEOMETRY

3.1 DISCUSSION '

This section presents the leading edge geometry that has been incorporated into
CAVE and discusses how this'geometry is discretized into nodes by the LEAD4 sub-

roqtiné. * This section also presents the input data format for this geometry.

Figure 2 shows the leading edge geometry that is tacitly assumed by subroutine
LEAD4 when it generates a nodal network, | The insulating layer can be eliminated,
as can either one or both of the coolant passages. These eliminations are accom-
plished very simply by using input values of zero for the insulation thickness and

coolant passage radii.

Figure 3 shows the grid network for the leading edge. The nose region is
divided into elements by concentric arcs and rays. The wedge portion is divided into
rectangular elements, except near the coolant passages where odd shapes are
encountered, and near the centerline, where the elements are trapezoidal. The cal-
culation of the node capacitances is a straight-forward matter and it is done exactly
for all elements including the trapezoids. The calculation of the conductances is also
a straight-forward matter except near the coolant passages where the conductances
are approximated using an effective area and length between nodes. In regard to
the approximation, the code requires that the following relationships be maintained
(Fig. 3):

AXl = RP1, radius of nose coolant passage
2
AXi =AX, , = AXi+2 = 5 RP2, where RP2 = radius of aft coolant passage

(and so, for example, i =4 in Fig. 3)

*LEAD4 is an expanded version of LEAD, which is a subroutine for leading edges
written by George Maise under contract NAS 1-11818 and reported in NASA CR-2435
by George Maise and Michael J. Rossi. The expanded version can handle cooling
passages and a layer of insulation applied around the leading edge.

13
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- It is not necessary that the three AX's associated with the aft coolant passage
be numbers 4, 5, and 6; that is just how it worked out in Figure 3. If there is no
nose coolant passage, then AXl can be arbitrary in size (but nonzero),

The thickness of the insulating material is given by TAU and it may equal zero.
Notice in Figure 3 that nodes are located at this interface between the two. materials.
LEAD4 assumes that there are equal volumes of the two materials associated with
each interface node. Meaning that one half of AT3, in this case, is associated with

the insulator and the other half with the main material.

The user may elect to have CAVE calculate the convective heat transfer coef-
ficients and adiabatic wall temperatures around the leading edge, or he may supply
tabular inputs for them. If the user elects the former option, then he supplies tabular
values for the flight parameters of velocity, altitude and angle of attack as functions
of time; moreover, he flags CAVE to use either the turbulent or laminar flow
correlations, the details of which are presented in Appendix B.

| For leading-edge problems that involve increased heating due to local interfer-
ence heating or some other effect such as plume impingement during a portion of the
flight trajectory, the user may input two tables into CAVE. The tabular values are
multiplicative factors which are position and time dependent. Values from one table
are used to modify the convective coefficient on the top surface and values from the
other table are for the bottom surface. A nonzero value for the input variable
HMODI flags CAVE that this heating multiplier option will be exercised. For the
normal run when the convective coefficient is not to be modified, HMODI equals 0,
and the tables are omitted.

In using this multiplier option, it is important to bear in mind that in modifying
the convective coefficients, CAVE takes the average of the multiplicative factor at
the beginning and end of the time interval and applies it over the entire interval.
Therefore, the tables and computing time intervals must be selected with same care
whenever step changes are to be simulated. A sample problem in Section 4 illustrates
this.



The node numbering scheme for the leading edge geometry is interesting. A

review of Figure 3 shows the following pattern:

When we get to the sample problem, we shall see that the temperatures and

other nodal properties are printed out in the following array form:

20

@ 18

le 13e 250
///—20 14e 26e
3e 15 etc.

4e 16e

50 17e

Ge 18e

Te igo

8e 200

e 21e

10e 22e

\\\110 23e

12e 24e

17
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Two observations can be made. First, the nodes along the top surface of the
leading edge (numbers 1, 13, 25, . . .) are printed out as the first row of the array
and the nodes along the bottom surface (numbers 12, 24, 36, . . .) are printed out
as the last row. And, secondly, if the elements of the first column are rotated as the
arrows indicate, the array gets rearranged into something looking somewhat like the
nodal arrangement within the leading edge. With a little experience, the user of
CAVE is able to quickly scan the output and get an immediate feel for the temperature

gradients within the leading edge.

The following subsections present the input data format for leading~edge problems

as well as for a sample problem.
3.2 INPUT DATA FORMAT FOR LEADING EDGE GEOMETRY

Indexes Card

e JGEO, L, M, NE* (415)
JGEO =1 (selects leading edge geometry)
L = number of elements through the material (must be an

even integer)

M = number of elements along top (or bottom) half of
leading edge

NE = number of dominant eigenvalues to be used in solution

(e.g., a typical number is 5)

Title Card

® Run identification, comments, etc. (5A10)

Radiation Card

e EPS1, TBG1 (2F10.5)
EPS1 = emissivity of surface

TBG1 = background radiation temperature, °R

*The product L x M equals the total number of nodes. The current dimension
statements in CAVE require that L x M <200 and that M < 25 for the leading edge

geometry.
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Material Properties Cards

e MAT " (15)
e NMAT1, RHO1, CONAV1, CPAV1 _ (110, 3F10. 5)
e TMAT1, TMAT1(2), ..., TMAT1 (NMAT1) omit (8E10.0)
e CONDT1(1), CONDT1(2), ..., CONDT1 (NMAT1) } if (8E10.0)
e CPT1(l), CPT1(2), ..., CPT1 (NMAT1) NMAT1=0 (8E10.0)

(If MAT = 2 include the cards:)
e NMAT2, RHO2, CONAV2, CPAV2 (110.0,3F10.5)
e TMAT2(1), TMAT2(2), ..., TMAT2 (NMAT2) omit (8E10,0)
¢ CONDTZ2(1), CONDT2(2), ..., CONDTZ (NMAT2) if (8E10.0)
e CPT2(1), CPT2(2), ..., CPT2 (NMAT?2) 1 NMAT2=0 (8E10,0)
MAT = number of materials (1 or 2)
NMAT1 = number of entries in properties table (maximum
of 10). NMAT1 = 0 for constant properties
RHO1 = density of material 1, lbm/cu-ft
CONAV1 = gverage thermal conductivity of material 1 (used
when NMAT1 = 0), Btu/ft-sec-°R
CPAV1 = average specific heat of material 1 (used when

NMAT1 = 0), Btu/lbm-°R

TMAT1 (I) =temperatures in thermal properties table for
which CONDT1 (I) and CPT1 (I) are given;
I1=1, 2, ..., NMAT1, °R

CONDT1 (I) = thermal conductivity of material 1 at temperature
TMAT1 (I), Btu/ft-sec-°R

CPT1 (I) = gpecific heat of material 1 at temperaturé
TMAT1 (I), Btu/lbm-°R

NMAT2, RHO2, CONAV2, efc., same as NMAT1, RHO1, CONAV1, etc.,
except applied to material 2



Detail Geometry Cards -

MCAP, THETA
DELX(1), DELX(2), DELX(3), ..., DELX(MM)
DELR(1l), DELR(2), DELR(3), ..., DELR(L/2)

TAU

RP1, RP2, S, HCOOL1, HCOOL2, TCOOL1, TCOOL2

(110, F10.5)
(8F10.5)
(8F10.5)

(F10.5)
(7F10.5)

MCAP = number of elements into which nose of leading edge

is subdivided (must be an even integer)
THETA = wedge half angle of leading edge, in degrees
DELX(I) = spatial increments in x direction I=1, 2, ..
(where MM = M - MCAP/2), ft

., MM

DELR(I) = spatial increments in radial direction I=1, 2, ..., L/2

TAU = thickness of material 1, ft (when considering only one material,
TAU = 0)

RP1 = radius of nose coolant passage, ft

RP2 = radius of aft coolant passage, ft 4

S = distance between coolant passage centers, ft Q/g ,_:5

HCOOL1 = convective heat transfer coefficient inside nose coolant

passage, Btu/ftz-sec-"R

HCOOL.2 = convective heat transfer coefficient inside aft coolant

passage, Btu/ftz-sec-°R
TCOOL1 = nose coolant temperature, °R
TCOOL2 = aft coolant temperature, °R

Initial Temperature Cards

20

KODE, I, T(I), O, JJ

11100 (indicates end of initial temperature cards)

KODE = 0 or blank

I = node number

(215,E10.0, 215)

(15)



T(I) = node initial temperature, °R
II and JJ = the node number is incremented by the spacing JJ until

the limit II is reached. Each node so specified is

assigned the same temperature

Wing Angles Card

e SWEEPA, DIHEDA, CODEX, HMODI, TURBL (5E10.0)

SWEEPA = wing sweep angle, in degrees

DIHEDA = wing dihedral angle, in degrees

CODEX = 0. for convective coefficient and adiabatic wall
temperature computed by CAVE; = -1, for tabular
input of coefficients and temperatures

HMODI = nonzero value indicates that two tables will be
read at the end and used to multiply the
convective coefficient

TURBL = 0. for laminar flow, = 1. for turbulent flow

Air Properties Card (omit when CODEX = -1.)

° GAM, RGAS, PR (3E10.0)
GAM = ratio of specific heats of air
RGAS = gas constant for air, ft-1bf/lbm °R
PR = Prandtl number of air

Flight Trajectory Cards (omit when CODEX = -1.)

e NTRAJ (I10)

e TIMTAB(1l), TIMTAB(2), ..., TIMTAB(NTRAJ) (8E10.0)

e ALTTAB(1), ALTTAB(2), ..., ALTTAB(NTRAJ) (8E10.0)

e VELTAB(1), VELTAB(2), ..., VELTAB(NTRAJ) (8E10. 0)

e ALPTAB(1), ALPTAB(2), ..., ALPTAB(NTRAJ) (8E10.0)
NTRAJ = number of points in trajectory table (2 < NTRAJ <50)
TIMTAB(I) = time in trajectory table I=1,2,...,NTRAJ, sec

ALTTAB() = altitude corresponding to time TIMTAB(I), ft
VELTAB(I) = velocity corresponding to time TIMTAB(I), ft/sec
ALPTAB(I) = angle of attack corresponding to time TIMTAB(I) must be

non-negative, degrees
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Convective Coefficient and Adiabatic Wall Temperature Cards (omit when CODEX = 0.,)

The input format for these four tables is described under subroutine NURED
given in Appendix D, Sheet D-1. (Note that in the structure of these tables time is
considered argument 1 and distance argument 2,)

o Table of convective coefficient as a function of time and distance along
top of leading edge

e Table of adiabatic wall temperature as a function of time and distance
along top of leading edge (note that the tabular entries of this table for
time and distance must be identical to those of the above table)

e Table of convective coefficient as a function of time and distance along
bottom of leading edge

e Table of adiabatic wall temperature as a function of time and distance

along bottom of leading edge (note that the tabular entries of this table

for time and distance must be identical to those of the above table)
e Blank card (terminates table read in)

Time Intervals Cards

NTIMES (110)
TIMES(1), TIMES(2), ...... TIMES (NTIMES) (8E10.0)

NTIMES =number of points in time intervals array (2< NTIMES <50)
TIMES(1) = initial time (usually equals 0.), sec
TIMES(I) =time at which temperatures will be calculated and

printed out 1 =2, 3, ..., NTIMES, sec

Convective Coefficient Modification Tables (omit when HMODI = 0.)

Two tables are required to modify the convective heat transfer coefficient
(see p. 14). The first table gives the multiplicative factors for the top surface of the
leading edge; the second table gives the factors for the bottom surface. Time is

.considered argument 1 and distance argument 2. The writeup for subroutine

NURED, Appendix D (Sheet D-1), gives the specifics on the format requirements.
Follow these two tables with a blank card; omit the blank card if the tables are not

read in,



3.3 “SAMPLE PROBLEM FOR LEADING EDGE GEOMETRY

This subsection contains an illustration of the leading edge geometry conside:e
as a sample problem (see Fig. 4). The main features are that it is made of berylliu
has a nose radius of 0.52 cm and is cooled internally via nose and aft coolant passage

The trajectory is one of a missile with a maximum Mach number of six.

Reference to the listing of the input data (see Sheets 3.3 on p. 24) shows the
time step intervals used.in this problem were: 0 to 10, 10 to 20, 30 to 40.4, 40.4 to
80, and 80 to 120 seconds. Smaller time steps were used in the beginning because
the trajectory is changing more rapidly then. It should be noted that for a problem
such as this one where radiation is neglected and the thermal properties are conside
ed coﬂstant, it is' possible to use one single time step to cover any portion of the
trajectory with constant flight parameters. Specifically, since the flight parameters
velocity, altitude, and angle of attack are constant from 40.4 to 120 seconds, it
would have been possible to use the single interval 40.4 to 120 in lieu of the two
intervals 40.4 to 80 and 80 to 120 seconds. For laminar flow where the convective
coefficient is independent of wall temperature, CAVE would calculate the same
temperatures at time 120 seconds either way since the boundary conditions and
properties are constant throughout the interval. The 80 second point was introduced

here so as to obtain a printout of the temperatures at this time for plotting purposes

The following pages show listings of the input data and the output generated
by CAVE for this leading edge problem. The sequence of the output is:

e Statement regarding storage allocated for S array in main program
e Geometry related input data

e Node numbers adjacent to exterior boundary, nose cooling passage and

aft cooling passage
e Material properties
e Trajectory table
] .Node number location within output array

® Material number assigned to each node. (In this problem there is only on:

material being used.)
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The capacitance of each node
The conductance in the x-direction between nodes
The conductance in the y-direction between nodes

Initial temperature distribution

And then the following information is printed for each time interval:

Flight trajectory parameters, Mach number, altitude, velocity, and
angle of attack at the end of the time interval

Average heat transfer coefficients calculated using the h values at the

beginning and end of this time interval

Average heat transfer couplings, which include radiation effects, if any,
calculated using the temperatures at the beginning of this time interval

(See Appendix C)
Average adiabatic wall temperatures for this time interval
Temperatures at the end of the interval

Steady-state temperatures for the heat transfer couplings and adiabatic

wall femperatures of this inferval

Integrated heat input to each node. This gives the net heat transfer

at each boundary node up to the end of this time interval

(Annotation has been added to the input and output to aid the reader.)
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"NOT TO SCALE

BERYLLIUM

k = 138,2 j/m-sec-k
Cp = 1251 j/kgm

o = 1826 kgm/m
IRNOSE = 0,523 cm

FIG. 4 GRID NETWORK™ FOR MISSILE LEADING EDGE WITH COOLING
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1 ]
RUN 125.3
N

1
[}
16
+003a370

o
<
¥

SIS

20 3 COMMENT CARD
Logs WITH cnol.mc:_—-——__’__—'_uo RADlATCION

114.
10.
«02
«04
«006RK48
«02
ah0.

0.
$3.3
20.

52273
4453,24
0.

10.

- — 1 MATERIAL
-0222 +53%<—— AVERAGE MATERIAL PROPERTIES
02 04 «04 « 04 «0133333 «0133333
003435 08 NODAL GEOMETRY DATA
P R (P 0! a20. as0- INITIAL TEMPERATURE
"«——SWEEP ANGLE, DIHEDRAL ANGLE, CODEX, HMODI
«65 <——A|R PROPERTIES
30. 4044 120.
239?;; SZ:??ge 512?‘35; FLIGHT TRAJECTORY
20. 30. 4020 no. 120. } TIME STEP INTERVALS

SHEET 3.3 INPUT DATA FOR LEADING EDGE PROBLEM (REFER TO FIG. 4) (SHEET 1 OF 8)



L3

AU s s
R L.

e R

BRRKEEREER SRR RS RERRES
TOTAL NO. OF s CAvE cane s
NODES ON SURFACE
L M NO.OF NODES  NO. OF EIGENVALUES NE
A0 SURFACE ELFMFNTS--— 6 RNOWS BY 20 COLUMNS GIVES 120 ELEMENTS 3 DOMINANT MODESe s s REQUIRES S182 WORDS OF MEMORY

FCONONOMIZE .4 «REPUCE DIMENSION NF S AND VALUE OF MWNRDS FRDM 12000 TOWARDS 556n <= VALUE REQUIRED FOR THIS PROBLEM

VALUE REQUESTED IN CAVE
Al et R R R L a2 Rt R R L R s R P T N N R R I R 2 R s T R f S ST 2222

RUN 125.3 LeEs WITH CONL INGw———COMMENT CARb

RXRSEERBERERAFEBRA SR AR AR R R AR BRI KRR AR R KRR AR R AR RN AR R AR R R R AN AR R AR KRR AR IR R KRB R R RN F R R R R R R AN R LR ®

LEADI NG ENPGE PRNDBLEM
NNSE RADIUS= 0.1716KFE=-01 FT
LLENGTH OF WEDGE SECTINN= 0.3234E 00 FT
- THETA= 041000 02 DEG
0.0 FT

TAU=
EMISSIVITY= 0.0
RADIATINN RACKGROUND T= 0.0 DEGWR
RADIUS NF NOSE COOLING PASSAGE= 0.3432E-02 F

MOSE CODLANT H= 0,2000E~-01 RBTU/SEC-FT#%2-DFGR
NOSFE CONLANT T= 0.4200E 03 DEG.R
RANDIUS OF AFT CONLANT PASSAGE= 0.2000E-01 FT ,
AFT COOLANT H= 0+.1000E-01 BTU/SEC-FT#%2-DEGe.R
AFT CONULANT T= 0.4400E 03 NEG.R

THE EXTEFRIOR BNUNDARY NODES ARE
L3 7 12 13 18

19 24 25 30 3
9

36 37 42 43 48 AQ sS4 55
61 6h &7 72 73 78 79 84 a5 90

1 60
1 96 97 102 103 108 109 114 135 120
THE NOSE CONLING PASSAGE NODES ARE

4 9 10 15 16 21 22 27 28 33 3a 39 40 A5 a6 51 52

THE AFT COOLING PASSAGE NNNDES ARE
a7 an 93 9 99 100

SHEET 3.3 QUTPUT DATA FOR LEADING EDGE PROBLEM (REFER TO FIG. 4)(SHEET 20F 8)
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PRpPppapaRparpangppenpipanpaeer T T PTT T TY R PR E L TR R R TR PR L P R S R LA AL P LT IR L R Pt i ]

AVERAGE

MATERTIAL PROPERTIES

MATERTAL 1 RHO=114.00 LBM/CU-FT K=0402220 BTU/SEC=FT-DEG.R CP=0+5340 BTu/LnM-oEG.n(——MATER'AL PROPERTIES

PP T T P R S L e L e T TR I T L 2]

TABLES
TIME IN SFCOANDS

. 040 0.2000€ 02 0.3000€ 02 0.4080F 02 0.1200€ 03

ALTITUPE IN FEET 7e00F o 0.7000¢ 0
0.4400F 0% 0.5227E 05 0.6487F 05 0.7400F 08 .74

VFLOCITY IN FEFT PFR SEC. FLIGHT TRAJECTORY
6.2904% 04 0.4453E 04 0.507RE 04 0.58G1F 0a 0.5841E Oa

ANGLE NF ATTACK [N DEGRFFS
040 0.0 0.0 0.0 0.0

MAEN KRR AR AR R R KRR AN R R AR R KA R R AR A AR R R R AR KR AR NN R R AR AR R R R R AR R KRR kR kK F R KRk kR Kk Rk ok ki kok ok

NODAL NETUWDORK

“STAGNATION POINT” NODES ODES ALONG TOP SURFACE NODES ALONG BOTTOM SURFACE
NONF NUMRFRS
ROwW 7/ COL 2 3 a € 6 7 A Q 10
1 7.0 13.0 1940 2520 31.0 37,0 23.0 49,0 5540
2 8.0 12.0 2040 3840 43,0 50.0 5640
3 9.0 15.0 2140 390 450 5120 5740
a 1520 1640 220 20.0 26,0 5200 5800
s 11.0 1740 23.0 4120 4740 530 s9.0
“ 1200 1R.0 2440 42,0 4n.0 S6.0 6040
ROW / CNL 12 13 14 17 1R 19 20
1 67.0 7340 79,0 97.0 103.0 109.0 11540
2 6m0 7420 £0.0 9840 10440 1100 11620
F 6940 7540 A140 9940 105.0 11140 11740
s 7020 7640 A2.0 100.0 10620 11250 11820
5 71.0 7740 A3.0 1014 10720 11340 11940
6 A620 7250 7m0 R4.0 10240 10830 114420 12040
MATERIAL | USED THROUGHOUT
MATERTAL NUMARER AT RACH NODE /
ROW /7 CAL 1 2 3 4 5 6 7 8 s 10
1 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 140
2 1.0 1.0 1.0 10 120 1.0 1.0 1.0 1.0 1.0
3 120 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
a 1.0 1.0 1.0 140 1.0 1.0 1.0 1.0 1.0 1.0
s 1.0 10 1.0 140 140 1.0 1.0 1.0 1.0 1.0
A 1.0 1.0 1:0 140 1.0 1.0 1.0 1.0 140 1.0
ROW / cOL 11 12 13 1a 15 16 17 18 19 20
1 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 140
3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
. 1.0 1.0 1:0 1.0 1.0 140 1.0 1.0 190 140
5 120 1.0 1.0 1.0 1.0 1.0 1.0 1.0 120 1.0
6 1:0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 140

SHEET 3.3 OUTPUT DATA FOR LEADING EDGE PROBLEM (REFER TO FIG. 4){SHEET 3 OF 8)



CAPACITANCE AT EACH NODE
1

ROwW / CAL 2 3 & 5 6 7 A 9 10
1 Ne563E-03 0.563E~03 0e563E-03 0+5A3E-D3 0.563E-03 0.563E-03 0.563€E-03 0.563E-03 0717E-03 0.81RF-02
2 0.751F-03 0+7S1E-03 0.751F~03 0.751E-03 0.751E-03 0e7S1E~03 0. 751E-03 0.751E~03 0,143E-02 0.836E-02
3 O«1MRE-03 0.188E-03 04 1RRE~03 O.18RE-03 0.1RB8E-03 0+188E-03 0« 1RBE-03 0.188£-03 0eB72E-03 0s112F=01%
a4 0.1MRFE-03 0+1ARE~-03 0.18ME-03 0«18mE-03 0.1RA8BE-03 0.188E~-03 0.188F-03 0.18RE-03 0.B872E-03 De112F=01
5 N.751FE-03 0.,751E-03 0.751E-03 0.751E-03 0.751E-03 0+751E-03 0e751E-03 0.751E-03 0e143E-02 0+836F-02
6 0e5A3F-03 DSH3IE-03 0«5H63E~-03 De56H3IE-03 0.,563E-03 0.563E-03 0.563E~-03 0.563€E-03 0a4717E~03 0.418F-02

RNW 7 CNL 11 12 13 18 15 16 17 18 19 20
1 0«4 1AF-02 0.R36E-02 0eB36E-02 Q.RA3RKF-02 0.279€-02 0.279E-02 Q.?79F~02 0.R36E-02 0.836E-02 0«B36F-02
? NeA3ZEF-02 0+167FE-01 0.167E~01 0.167E~01 0.557€E-02 0+557E~-02 NeSS7F-02 0.167F=-01 0.1 67E-01 0+167E-01
3 0e155F=01 0.,439E-01 0.611E~01 0.783E~01 0.187E-01 0e159E-01 0.226F-01 O.113E 00 0.130E 00 0e.147F 00
4 0.155E-01 0+439F-01 0.611E-01 0.78R3E-01 0+.187E-01 0+159F=-01% 0.226E-01 0.113E 00 0.130€E 00 0.147F 00
5 NeRILF-02 0« 1567E-01 0«167E-D1 0.167E-D1 D.557E~02 0+557E~-02 0.557E-02 0.167E-01 De1H7E-01 Ge167E-01
6 0.4 1RE-N? 0+836E-02 0.R36E-02 0.836E~-02 0.,279E~-02 0.279F-02 0.?79E-02 0.83KF-02 0+A36E=-02 0+836F-02

CONNUC TANCE IN X-DIRECTINON
1 ?

RDW 7 ChM_ 4 3 4 5 ] 7 a 9 10
1 Qe2maF=-01 0.2RBAE-01 0.284F-01 0«2RaF-01 0e2RAE-D1 0.2BaE~-01 D0«7?84E-01 0+237E-01 0«650E-02 0«3R1E~-N?
2 D.RMAPF~D1 NeBB2E=-01 0.8A2F-01 0+.AR2E-O01 D.ARPE-01 048BB2E-01 0+R82E-01 0.5R3E-01 0.130E-01 De762F-02
3 ND.AR2F-01 D.BRRE-O1 0.8R2E~01 0.8R2E-01 0+.832E-01 0.882E~-01 N+882F-01 0.378E-01 0s,144E~01 QeRA0FE-02
& N.ARZF~01 O«RAAR2E=-01 D.RR2E~-01 0.RR2E-01 0+BR?E-01 0.882E-01 0.RB82E~01 0.37RE-01 Ds144E-D1 D«B4NE=-02
s 0+AR2F=01 0.AR2E-01 0.8A82E-01 0+8RA2E-01 D.RR2E-0O1 0.R82E£~01 0.RAPE-01 0.5R3E-01 0+130E~01 0e762E=02
L3 0+2R4FE~0D1 0.284E-0D1 0+2RAE~0D1 D.2R8E-D1 Des2RAFE=-01 D+284FE-01 D« ?BAE-01 0.237€~01 D+ 650E-02 ND.3BIF=-07
RNW / COL 1 12 13 14 15 16 17 1a 19 20
1 0«?58F=02 0«190E-02 04 190F=-02 O«2RRE=-02 0e«S71E=-02 0.571E~-02 0+”?B6F-02 0.,1Q0E-02 02190E~0? 0e0
2 0«50RF=-02 0.3R15-02 0.381€E-02 0.571E~02 0el114E=-01 O0Os114E-01 0.571E=-02 0.,381€E~02 Qs.381E-02 0a0,
3 0.101E-01 0+140F-01% 0.250F-01 04294E-01 0.294F~0% 0.?96E-01 0.257€-01 0.296E-01 040
4 0s101E=01 0.140F-01 D+.250F-01 0.294E-01 0s294F~-01 0+”96E-01 De257€-01 0e296E-01 0«0
5 Q+3RIE-0P 0.3R1F-02 DeS71E-02 0D=.113E-D1 Ds114E-01 D.571E-02 0.38YE~D2 D.381F-D2 0.0
6 0e190F-02 0+4190F-02 0e.2RAKFE~02 0.571E-02 De571E-02 Nes”?B6E-02 0.190E-02 0«190E~02 0«0
! ZERO VALUES SINCE NODES ARE ZERO VALUES SINCE THERE ARE
CONDUCTANCE 1N Y=DIRFCTION ADJACENT TO COOLING PASSAGE NO NODES TO THE RIGHT OF THESE |
RN /7 CNOL 1 2 3 a 5 & ? a 9 10
Ne759F~02 0.759E~-02 0.759€E-02 0+ 759E~-02 0e.759E-02 0e759E~02 O« 759E~02 0. 759E-02 0.,111E-01 QebaT7F—01
0+3853F=-02 0.353€E-02 0.353F~-02 0e353E-02 D0+353E-02 0+353E-02 0e353E=-02 0.353F-02 0s109E=-01 NeB62F-01
0.0 - 0.0 0.0 0.0 0.0 N0 0.0 0.0 Ne3IRAF=-01
0s353F=-02 0.353E-02 0.393E-02 0e353E-02 04353E~02 0«353E-02 O«353E-02 0.353F-02 0.109E~01 0B62F=01
h 0e759E~-02 0s759E-02 0e759F=-02 0.759E-02 Ne759E-02 Oe7S59E~02 0e 759E-02 0+759E-02 D+111E-01 Da647F-01
3 0.0 0.0 0.0 D.0 D.0 0.0 0.0 0.0 CeD
1 /7 CnL 11 12 13 14 16 18 19 20

0.647E-01 04129E 00 0.129E 00 0+.129E 00
0.R62E-01 0.172F 00 0.172E 00 0.172€ 00
0.230E-01 0.304€-01 04205E-01 0.+155E-01
0«862E-01 0«172E 00 0.172E 00 0.172E 0O

0e169E-01 0.131 1 0.172E 00 0.172E 00 0.172€ 00
De647€-01 04129 00 0+129E 00 0.129E 00 0s831E-01 O.831 1 0«129E 00 0+129E 00 0.129E 00
0.0 0.0 0.0 0.0

0.0 0.0 o.o/o.o’/yo.o ]
\ZERO VALUES SINCE THERE ARE NO NODES BELOW THESE

0+.431E-01 0.43
0.169E-01 0013
0e 0 0.0

01 0.129E 00 0.,129€ 00 0+129€ 00
01 0.172E 00 0.,172E 00 0.172F 00
0.104E-01  0.M90E-02  O.780E-02
0
0

n
2
VP UN—=EINPWN—~

SHEET 3.3 OUTPUT DATA FOR LEADING EDGE PROBLEM (REFER TO FIG. 4).(SHEET 40F8) - o -
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0€

INITIAL TEMPERATURE NISTRIBUTION DEG.R

ROW /7 COL 1 2 3 a 5 6 7 L) 9 10
1 46040 460.0 4600 46040 46040 46040 460.0 46040 460.0 4600
2 460.0 460,.,0 460.0 460.0 46040 460.0 460.0 460.0 460.0 46040
3 46040 460.0 46040 46040 46040 46040 46040 46040 4600 46040
4 45060 460.0 46040 46040 460.,0 460.0 46040 460.0 4600 46040
5 4K0.0 246040 46040 46040 46040 4600 46040 460.0 460.0 46040
6 46040 460,.,0 4600 46040 4600 46040 460.0 460.0 46040 4600

ROW / COL 11 12 13 14 15 16 17 1R 19 20
1 46040 460,0 46040 46040 46040 460.0 4600 460.0 46040 46000
2 an0.0 460.0 46040 46040 460.,0 46040 46040 460.0 46040 46040
3 A60.0 460,0 46040 4600 46040 46040 4600 46040 460.0 46040
-4 45040 460.0 46040 46040 46040 465040 46040 460,0 46040 46040
S 460.0 460.,0 46040 46040 46040 46040 46040 460.0 4600 46040
6 460.0 460.0 460.0 460.0 46000 46040 460,0 46040 46040 a460.0

EEEENERREERE SRR AR A R R AR R R AR R R R R A KRR R R R R AR AR AR AR AR R R RN A R R R AR R KRR N RKR R KRR AR R R AR R A KRR KRR R R R R Rk kR kR Rk

FIRST TIME STEP

*sx%%% T [ M F = 0.1000E 02 S E C O N D § *x%xxx

FLIGHT CONDITION AT

XMACH= 3.800 ALTITUNDE= a48136.5 VELOCITY= 367R.74 ANGLE OF ATTACK= 0-O<—T|ME 10 SECONDS

AVERAGE AT Teawserm caerFicients arussec-rrxe-nec.n sNOSE COOLING PASSAGE AVERAGE OF H AT TIMES 0 AND 10
RMOW /7 COL 1 2 3 a 5 6 7 A 9 10
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Section 4
COOLED PANEL, SLAB AND X-24C STRUCTURE

4,1 DISCUSSION

This section discusses the input data format and definition of variables for the
three geometries of cooled panel, slab and a structural arrangement referred to as
basic X-24C structure. These geometries are shown in Figures 5 through8 which give
the overall dimensions that are input to CAVE and the type of boundary conditions
associated with the geomefries. For the cooled panel, there are two fypes of corners
that can be analyzed: square and round (see Figs. 5 and 6).

The top surface of each of the three geometries experiences aerodynamic
heating. The user may elect to have CAVE calculate the convective heat transfer
coefficients and adiabatic wall {emperatures, or he may supply tabular inputs for
them. If the user elects the former option, then he supplies tabular values for the
flight parameters velocity, altitude and angle of atfack as functions of time,

In calculating the aerodynamic heating, CAVE assumes the boundary layer
flow is processed through an oblique shock Whenever the top surface is moving at
speeds in excess of Mach 1 and at an angle of attack relative to the freestream
conditions. Subroutine TRANS establishes whether the flow field is laminar or
turbulent based on a transition criterion (see Fig. B-1, Appendix B). The details
of the aerodynamic heating equations that are used are given in Appendix B.

Depending on the orientation of the geometry with respect to the boundary
layer flow, the convective coefficient may vary with X (flow is from left to right in the
plane of the paper) or be independent of X (flow is into plane of paper). Both condi-
tions can be handled by CAVE. Setting the input variable CODEX equal to 1. selects
the former situation, while CODEX equal to 0. selects the latter. When the convective
coefficient is to be considered varying with X, the user must input a nonzero value for
REFX which represents an effective boundary layer length to the left edge of the
geometry (Refer to Appendix B).,
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As cited previously, an option exists to input directly the convective coefficient
and the adiabatic wall temperatures as functions of time and X in lieu of the flight

within structural members subjected to other than the usual aerodynamic heating.
The forcing functions for such special heating effects as caused by body shocks
intersecting the wing, separated flow regions, wing-body interaction and engine
exhaust plume impinging upon the structure can be calculated external to the code and

then supplied as input data to the code, CODEX is set equal to -1, to exercise this
option and the flight trajectory is not input.

An additional option exists to modify the convective coefficients by multiplicative
factors which are position and time dependent. (This would be useful in accounting for
shock impingement heating.) The factors are entered as a table. A nonzero value for
the input variable HMODI flags CAVE that this heating multiplier option will be exer-
cised. For the normal run when the convective coefficient is not to be modified,
HMODI equals 0. and the tables are omitted.

This modification option can be exercised whether CAVE calculates the original
or unmodified convective coefficients, or if they are input to CAVE.

Subroutine SLLAB2 discretizes both the cooled panel and slab geometries into

nocnniatar Aana o bmti mno o P [ Pl S Py -~
1€

nodes and calculates the associated capacitances and conductances. Subrouti
X-24C discretizes the X-24C geometry.

Figure 9 shows the grid network generated within SLLAB2 for the cooled panel
geometry of Figure 7. The network is generated based on the input dimensions S1, 82,
W1, W2, W3, TAU, HEIGHT, and on the AX's and AY's (which can all be different).
'i‘AU represents the thickness of the insulating material which may equal zero.

Notice that in Figure 9 nodes are located at the interface between the two materials.
SLLAB2 assumes that there are equal volumes of the two materials associated with
each interface node. This means that one half of AY3, in this case, is associated

with the insulator and the other half with the main material.

Figure 10 shows the grid network generated for the cooled panel with round
corner (see Fig. 6) based on the above input dimensions plus R, the inside radius of

the corner.
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The convective heat transfer coefficient and the temperature of the coolant are
input values. They are constant for the trajectory and may be input as zero, in which
case the surface of the coolant passage is taken as being adiabatic.

Figure 11 shows the grid network generated within SLAB2 for the slab geometry
of Figure 7. The network is generated based on the input values for the AX's and AY's
(which may all be different). Aerodynamic heating takes place on the top surface and
is handled just as in the cooled panel geometry. The other three sides of the slab are
taken to be adiabatic. Slab geometry is handled very much the same as cooled panel
geometry. The input card for 81, S2, W1, etc., associated with the dimensions of
the cooled panel is left blank for the slab; in other cases, the required input informa-

tion is the same,

A review of Figure 8 shows that the X-24C geometry introduces a feature not
embodied in any of the other geometries — contact resistance between materials, The
X-24C geometry can be viewed as having 5 components with a total of 4 interfaces be-
tween them. The unit surface contact resistances at the 4 interfaces are inputs to
CAVE. Figure 12 gives the grid network generated within subroutine X-24C for the
geometry given in Figure 8, It can be seen that nodes are located at the interfaces
between components. The precise location of a2 node at an interface is in the upper
component as the full contact resistance is applied to the conduction coupling between
the interface node and the node below it. As with all the other geometries, the user

must input the AY's such that the interfaces are mid-way within a AY spacing.

Another new feature to the X-24C geometry is that up to three materials can be
involved in the structure instead of the usual two. There is no limitation on the
arrangement of the materials among the five components. The thermal conductivity

and specific heats of the materials can be constant or temperature dependent.
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4,2 INPUT DATA FORMAT FOR COOLED PANEL AND SLAB GEOME TRIES

Indexes Card

e JGEO, L, M, NE* : (415)
. JGEO =0 (selects slab or cooled panel geometry)
" L = number of elemé_nts through the material
M = number of elements along top
NE = number of dominant eigenvalues to be used in

solution (e.g., a typical number is 5)
" Title Card
e Run identification, comments, etc. (5A10)

Radiation Card

e EPS1, TBG1 (21'10. 5)
EPS1 = emissivity of surface

TBG1 = background radiation temperature, °R

Material Properties Cards

e MAT (15)
e NMAT, RHO1l, CONAV1l, CPAV1 (110, 3F10.5)
e TMATL(l), TMATL(2), ..., TMATL(NMATI) omit (8E10. 0)
e CONDTI1(1), CONDT1(2), ..., CONDT1(NMAT1) p if (8E10. 0)
e CPTL1), CPT1(2), ..., CPT1(NMATI) NMAT1=0 sp10. 0

(If MAT = 2 include the cards:)

e NMATZ, RHO2, CONAV2, CPAV2 (110, 3F10. 5)
e TMAT2(l), TMAT2(2), ..., TMAT2(NMATZ) ommit (8E10. 0)
e CONDT2(l), CONDT2(2), ..., CONDT2(NMAT2) p if (8E10. 0)
e CPT2(1), CPT2(2), ..., CPT2(NMAT2) NMAT2=0 gp 10, 0)

*Current dimension limitations require that the product L. x M not exceed 200 and
that M not exceed 50.
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MAT = number of materials (1 or 2)

NMAT1 = number of entries in properties table
(maximum of 10) NMAT1 = 0 for '
constant properties

RHO1 = density of material 1, Ibm/cu-it

CONAV1 = average thermal conductivity of material 1
(used when NMAT1 = 0), Btu/ft-sec~R

CPAV1 = average specific heat of material 1 (used when
NMAT1 = 0), Btu/lbm-R '

TMATI() = temperatures in thermal properties table for
which CONDT1(I) and CPT1(I) are given;
I=1, 2, ..., NMATI, R

CONDTHI) = thermal conductivity of material 1 at
temperature TMAT1(I), Btu/ft-sec~"R

CPTL(I) = gpecific heat of material 1 at temperature

TMATIL(I), Btu/lIbm-°R
NMAT2, RHO2, CONAV2, etc., same as NMAT1, RHO1, CONAV1, etc. .~

except applied to material 2

Detail Geometry Cards

e DELX(l), DELX(2), DELX(3), ..., DELX(M) (8F10. 5)
e DELY(l), DELY(2), DELY(3), ..., DELY(L) (8F10. 5)
e TAU, R (2F10. 5)
e S1, S2, W1, W2, W3, HEIGHT, TCOOL, HCOOL _ (8F10. 5)

(leave this card blank when considering a slab, Fig. 11)

DELX() = spatial increments in x directionI =1, 2, ..., M, ft
DELY(I) = spatial increments in y directionI=1, 2, ..., L, ft
TAU = thickness of material 1, ft
R = radius of inner corner (Fig. 8) (leave blank
if it doesn't apply),.ft (=0. for MAT=1)
S1 = (refer to Figs. 9 or 10), ft
s2 = (refer to Figs. 9 or 10}, ft
w1 = (refer to Figs. 9 or 10), ft
w2 = (refer to Figs. 9 or 10), ft
w3 = (refer to Figs. 9 or '10), ft
HEIGHT = (refer to Figs. 9 or'10), ft
TCOOL = coolant temperature, R

coolant heat transfer coefficient, Btu/ftz—sec—"R

HCOOL
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Initial Temperature Cards

e KODE, I, T(I), 11, 33 (215, E10. 0, 215)
¢ ... |
e ...
e ...
e 11100 (15)
KODE = 0 or blank
I = node number
T = node initial temperature, ‘R

the node number is incremented by the spacing JJ

]

O and JJ until the limit II is reached. Each node so specified

is assigned the same temperature

Boundary Condition Cards

Two options exist: (1) in the first option, the user inputs the flight trajectory
and the code calculates the convective boundary conditions along the top surface of
the panel in accordance with the equations presented in Appendix B; and (2) in the
second option, the user inputs directly the convective heat transfer coefficient and

adiabatic temperature as functions of time and distance.

OPTION 1, FLIGHT TRAJECTORY SPECIFIED

¢ REFX, CODEX, HMODI (3E10.0)
° GAM, RGAS, PR (3E10.0)
e NTRAJ (110)
e TIMTAB(1), TIMTAB(2), ..., TIMTAB (NTRAJ) (8E10.0)
e ALTTAB(l), ALTTAB(2), ..., ALTTAB (NTRAJ) (8E10.0)
e VELTAB(l), VELTAB(2), ..., VELTAB (NTRAJ) (8E10.0)
e ALPTAB(1), ALPTAB(2), ..., ALPTAB (NTRAJ) (8E10.0)
REFX = effective boundary layer length, e.g., distance from

leading edge or nose of vehicle (refer to Appendix B), ft
CODEX = 0. for uniform convective coefficient across top surface;

CODEX = 1. for nonuniform convective coefficient (i.e.,

function of x); CODEX = -1. for tabular input for

convective coefficient and adiabatic wall temperature
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HMODI = nonzero value indicates that a table will be read at the

o end and used to multiply the convective coefficients

GAM = ratio of specific heats of air

RGAS = gas constant for air, ft-l1bf/Ibm~R

PR = Prandtl number of air

NTRAJ = number of points in trajectory table (2<NTRAJ <50)
TIMTAB(I) = time in trajectory table I = 1, NTRAJ, sec

ALTTAB(I) = altitude corresponding to time TIMTAB(I), ft

VELTAB(I) = velocity corresponding to time TIMTAB(I), ft/sec

ALPTAB(I) = angle of attack correspondirg to time TIMTAB(),
(must be non-negative), degrees

OPTION 2. CONVECTIVE COEFFICIENT AND ADIABATIC WALL
TEMPERATURE SPECIFIED

e REFX, CODEX, HMODI (3E10. 0)

REFX = effective boundary layer length, e.g., distance from
leading edge of nose of vehicle (refer to Appendix B), ft

CODEX = -1, (indicates to code that Option 2 is being exercised)

HMODI = nonzero value indicates that a table will be read at the end

and used to multiply the convective coefficient

Convective Coefficient and Adiabatic Wall Temperature Tables

Two tables are required. The first gives the convective coefficient as a
function of time (argument 1) and distance (argument 2). The second table gives
the adiabatic wall temperature as a function of time (argument 1) and distance
(argument 2). In setting up these tables, the same values for time and distance
must be used in both tables. The range of the distance argument must include the
interval REFX to REFX plus S1 for the cooled panel geometry and REFX to REFX
plus WIDTH, where WIDTH = %/[ AXi for the slab geometry. The tables must be

i=1
followed by a blank card. The specifics on the format for the tables are given in the

descriptions of subroutine NURED in Appendix D.
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The following input data is required for both options:

Time Intervals Cards

e NTIMES (110)

TIMES(1), TIMES(2), ««+... TIMES (NTIMES) (8E10.0)

°
NTIMES(I) = number of points in time intervals array (2 < NTIMES < 50)

= initial time (usually equals 0.) sec
= time at which temperature is calculated and printed

outI =2,3,..., NTIMES, sec

TIMES(1)
TIMES(T)

The multiplicative factor is given as a function of time (argument 1)
The writeup for subroutine NURED (Sheet D-1, Appendix
Follow this table with a blank -

heated surface.

and distance (argument 2).
D) gives the specifics on the format requirements.

card; omit the blank card if the table is not read in.

One table is required to modify the convective coefficient on the aerodynamically
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4.3 INPUT DATA FORMAT FOR X-24C GEOMETRY (See Fig. 12)

Indexes Card

e JGEO, L, M, NE* : (415)
JGEO = 2 (selects X-24C geometry)
L = number of elements through the material
M = number of elements along top
NE = number of dominant eigenvalues to be used in solution
(e.g., a typical number is 5)
Title Card
¢ Run identification, comments, etc. (5A10)
Radiation Card
e EPS1, TBG1 (2F10.5)
EPS1 = emissivity of surface
TBG1 = background radiation temperature, R

Material Properties Cards

e MAT (15)

e NMAT, RHO1, CONAV1, CPAV1 (110, 3F10. 5)
e TMATI(1), TMATL(2), ..., TMAT1(NMATI) omit (8E10. 0)

e CONDTI(l), CONDT1(2), ..., CONDTL(NMATI) %if (8E 10, 0)

e CPTIL(), CPT1(2), ..., CPTL(NMATI1) NMATI=0  4r10.0)

(If MAT = 2 include the cards:)

e NMAT2, RHO2, CONAV2, CPAV2 (110, 0, 3F10, 5)
e TMAT2(1), TMAT2(2), ..., TMAT2(NMAT2) omit (8E10, 0)
e CONDT2(1), CONDT2(2), ..., CONDT2(NMAT2) ) if (8E10, 0)
e CPT2(1), CPT2(2), ..., CPT2(NMAT2) NMAT2=0 (8E10, 0)
MAT = number of materials (1, 2 or 3)
NMAT1 = number of entries in properties table (maximum of 10)
NMAT1 = 0 for constant properties
RHO1 = density of material 1, Ibm/cu~ft

*Current dimension statements require L x M <200 and M <50.
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CONDT ()

CPTL(l)

= average specific héat of material 1 (used when

NMAT1 = 0), BmAMmJR

CONDTl(I) and CPTl(I) are given; I = 1, NMAT1,

= thermal conductivity of material 1 at temperature

TMATI1(I), Btu/ft -sec-°R

= gpecific heat of material 1 at temperature

MATATM1/IY Dé: /1. 0D
LViAAL AiL), DU/ LIom-"n

NMAT2, RHO2, CONAV2, etc., same as NMAT1, RHO1l, CONAV], etc., except
applied to material 2

Detail Geometry Cards

DELX(1), DELX(2), DELX(3), ...., DELX(M) (8E10.0)
DELY(1), DELY(2), DELY(3), ... DELY(L) (8E10.0)
S1, 82, 83, 54 (4E10.0)
Wi, W2, W3, W4, W5, W6, W7 (7E10.0)
RC(1), RC(2), RC(3), RC4) (4E10.0)
MP(1), MP(2), MP(3), MP(4), M(5) (5E10.0)
DELX(I) = gpatial increments in x direction1=1,2,...,M, ft
DELY(D) = gpatial increments in y direction I = 1,2,...,L, ft
81, S2, etc. = (Refer to Fig. 12) ft
RC(I) = unit surface contact resistance between

components I and I+1, sec-sq-ft-°R/Btu
MP(I) = integer value 1, 2 or 3 to select material properties

for component I

Initial Temperature Cards

KODE, 1, T(I), I, JJ
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KODE
I
T

= 0 or blank
= node number
= node initial temperature, °R
the node number is incremented by the spacing JJ until

I and JJ = the limited II is reached. Each node so specified is

assigned the same temperature

Boundary Condition Cards

Two options exist: (1) in the first option, the user inputs the flight trajectory and

the code calculates the convective boundary conditions along the top surface of the

panel in accordance with the equations presented in Appendix B; and (2) in the second

option, the user inputs directly the convective heat transfer coefficient and adiabatic

temperature as functions of time and distance.

OPTION 1. FLIGHT TRAJECTORY SPECIFIED

¢ REFX, CODEX, HMODI (3E10.0)
e GAM, RGAS, PR (3E10.0)
e NTRAJ (110)
e TIMTAB(1l), TIMTAB(2), ..., TIMTAB (NTRAJ) (8E10.0)
e ALTTAB(1), ALTTAB(2), ..., ALTTAB (NTRAJ) (8E10.0)
e VELTAB(1), VELTAB(2), ..., VELTAB (NTRAJ) (8E10.0)
e ALPTAB(1), ALPTAB(2), ..., ALPTAB (NTRAJ) (8E10.0)
REFX = effective boundary layer length, e.g., distance from

CODEX

HMODI

GAM

leading edge or nose of vehicle (refer to
Appendix B), ft

= 0. for uniform convective coefficient across top
surface; CODEX = 1. for nonuniform convective
coefficient (i.e., function of x); CODEX = -1, for
tabular input for convective coefficient and adiabatic
wall temperature

= nonzero value indicates that a table will be read at
the end and used to multiply the convective coefficients

= ratio of specific heats of air



RGAS
PR
NTRAJ

= gas constant for air, ft-1bf/lbm-°"R

= Prandtl number of air

= number of points in trajectory table (2 € NTRAJ < 50)
TIMTAB(I) = time in trajectory table I = 1, NTRAJ, sec

ALTTAB()) = altitude corresponding to time TIMTAB(I), ft _
VELTAB(I) = velocity corresponding to time TIMTAB(D), ft/sec
ALPTAB(I) = angle of attack corresponding to time TIMTAB(I),

in degrees

OPTION 2, CONVECTIVE COEFFICIENT AND ADIABATIC WALL

TEMPERATURE SPECIFIED

e REFX, CODEX, HMODI (3E10.0)

REFX = effective boundary layer length, e.g., distance from

leading edge or nose of vehicle (refer to Appendix B), ft

CODEX = ~-1. (indicates to code that Option 2 is being exercised)

HMODI = nonzero value indicates that a table will be read at the

end and used to multiply the convective coefficients

Convective Coefficient and Adiabatic Wall Temperature Tables

Two tables are required. The first gives the convective coefficient as a -

function of time (argument 1) and distance (argument 2). The second table gives

the adiabatic wall temperature as a function of time (argument 1) and distance

(argument 2). In setting up these tables, the same values for time and distance

must be used in both tables. The range of the distance argument must include the
interval REFX to REFX plus S1 for the cooled panel geometry and REFX to REFX

M

plus WIDTH, where WIDTH = z AXi for the slab geometry. The tables must be

i=1

followed by a blank card. The specifics on the format for the tables are given in

the descriptions of subroutine NURED in Appendix D.

The following input data is required for both options:

Time Intervals Cards

NTIMES

TIMES(1),
NTIMES(I)
TIMES(1)
TIMES(])

(110)

TIMES(2), ...... TIMES (NTIMES) (8E10.0)

number of points in time intervals array (2 £ NTIMES < 50)
initial time (usually equals 0.) sec

time at which temperature is calculated and printed
outI =2,3,...,NTIMES, sec
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Convective Coefficient Modification Table (omit when HMODI = 0.)

One table is required to modify the convective coefficient on the aerodynamically
heated surface. The multiplicative factor is given as a function of time (argﬁment 1)
and distance (argument 2). The writeup for subroutine NURED (Sheet D-1, Appendix
D) gives the specifics on the format requirements. Follow this table with a blank

card; omit the blank card if the table isn't read in.



4.4 SAMPLE PROBLEM FOR COOLED PANEL GEOMETRY

This subsection contains an illustration of the cooled panel geometry considered

.as a sample problem (see Sheet 4.4). Figures 9 and 10 show the grid network. The

panel was constructed of aluminum with a 0.686 cm layer of beryllium applied across
the top in contact with the hot boundary layer air. The aluminum structure was cooled
by a cbolant at a temperature of 660°R:with a convective heat transfer coefficient of
612.8 watts/mK.

Aerodynamic heating was calculated by CAVE based on the missile flight trajec—
tory shown in the following listing of the input data. The panel was located on the mis-

sile 6.096 m aft of the start of the boundary layer and hence the input variable

REFX equals 20. Throughout the flight trajectory the angle of attack was 20 degrees.

This sample problem shows the use of the heating multiplier option. Examina~
tion of the heating multiplier table in the listing of the input data reveals that during
the time period 30 to 40.4 seconds, the convective heat transfer coefficient increases
fivefold for the center section of the panel. To represent this step change in the
heating, table entries of 29.9, 30.1, 40.3 and 40.5 have been used. Furthermore
the time step intervals array contains these same times. Whenever a step change
is to be approximated to CAVE, it is necessary to use '"bracketing' times in setting
up a multiplier table and the time step interval array. That is, if a step change
occurs at time t,, the table should have time entries at t - € and t,+ € where € is
some small number. Likewise the time step interval array should have these same

times.

The following pages show listings of the input data and the output generated by
CAVE for this cooled panel problem. The sequence of the output iss

e Statement regarding storage allocated for S array in main program
e Geometry related input data

e Material properties illustrating the format used when the properties are

temperature dependent and temperature independent
e Flight trajectory table

e Table of heating multiplier as a function of time and distance
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Node number location within the output array. A node number of 0 (zero)
printed in this array indicates a nonactive node. Notice how the printout has

a format similar to the shape of the geometry of the problem being considered,

which makes for very convenient reading and quickly gives the user a feel
for the temperature distribution within the body. This format is carried

throughout in all the following arrays

Material number assigned to each node., A material number of 3 signifies

that the node is at an interface between material 1 and 2
Capacitance of each node

Conductance in the x-direction between nodes
Conductance in the y-direction between nodes

Initial temperature distribution

And then, the following information is printed for each time interval:

Flight trajectory parameters, Mach number, altitude, velocity, and angle of

attack at the end of the interval

Average heat transfer coefficients calculated using h values at the beginning

and end of this time interval

Average heat transfer couplings, which include radiation effects, if any,
calculated using the temperatures at the beginning of this time interval
(See Appendix C)

Average adiabatic wall temperatures for this time interval
Temperatures at the end of the interval

Steady-state temperatures for the heat transfer couplings and adiabatic wall

temperatures of this interval

Integrated heat input to each node, This gives the net heat transfer at
each boundary node up to the end of this time interval. A positive value
signifies heat transfer into the body and a negative value heat transfer out

of the body at that boundary node

(To aid the reader, annotation has been added to the listing of the input data and
to the output.)
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MATERIAL PROPERTIES
MATERTAL 1 RHO=114.00 LBM/CU-FT K=0.03220 BTU/SEC~FT-DEGeR CP=0.3600 RTU/LAM~DEG.R T= 450,00 DEGeR
K=0+030S6 BTU/SEC~FT-DEGeR cP= RTU/LRM=-DEG.R T= 500400 DEGeR 1ST MATERIAL HAS
K=0.02722 BTU/SEC-FT-DEGR ATU/LAM=-DEG R 7= 625.00 DEG.R | TEMPERATURE
K=0402444 BTU/SEC-FT-DEGeR ATU/LBM-DEG.R T DEGeR
K=0.02220 BTU/SEC-FT-DEGsR ATU/LBM=DEGeR T pec.r [ DEPENDENT
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TIME IN SECONDS
0.0 0.2000E 02 0.30008 02 0.4040E 02 041200 03
ALTITUPE IN FEET FLIGHT
044800 05 0.5227€ 05 0.6487E 05 0+7400F 05 0+ 7400E 0S y
VELNCITY IN FEET PER SECe
0.2904F 0a 0.4453E 04 0.507RE 04 0.5841E 04 0.,5841E 04 TRAJECTOR
ANGLE NF ATTACK IN DEGREES TABLE
042000F 02 0.2000E 02 0.2000E 02 042000E 02 0.2000€ 02
TABLE OF HEATING MULTIPLIER AS A FUNCTION OF TIME AND DISTANCE
3 6
0.0 0.0 0.2990F 02 0.3010F 02 0.4030E 02 0440S0E 02 061200 03 0.0 0.0 0.0
0.0 0.1000F 01 0.1000F 01 0,1000E 01 0.1000€ 01 0.1000E 01 041000E 01 040 0.0 0.0
0.2010F 02 0.1000E 01 0.1000E 01 0.1000F 01 0+1000€ 01 0.1000E 01 0.1000E 01 0.0 0.0 0.0
0.2011F N2 0.1000F 01 0.1000F 01 0.5S000E 01 0.S5000FE 01 0.1000E 01 0.1000E 01 0.0 0.0 0.0
0.2015E 02 0.,1000F 01 0.1000F 01 01 0.S000E 01 041000E 01 0.1000E 01 0.0 0.0 0.0
0.2015E€ 02 0.1000E 01 041000 01 . 01 0.1000F 01 O0.1000E 01 0.1000E 01 0.0 0.0 0.0
0.2030E 42 O0.1N00F 01 0.1000E O1 0.1000F 01 0.1000E 01 0.1000E 01 0.1000E 01 0.0 0.0 0.0
[ [} -
~
’t""'l-‘tt"_“lt"*tt‘tﬁ.!ttttl‘t‘tttll#tt#-il.ittttttlt!l!*ltttt‘t'tl't.ttttl-.“‘ltttl!'tiitlttlt.ttt.‘ltti*“tt*‘.t
- NNDDPD AL NETWORK PRINTOUT HAS
FORMAT SIMILAR
: TO SHAPE OF
NODE NUMRERS 0s OF GEOMETRY
ROW / COL ;o 2 k] 4 5 6 7 a 9 10
1 . 1814 170 I 35,0 5.0 BT.0 7.0 TT3.0 1290 135+0
2 : 240 18.0 3a.0 5040 6640 82.0 9840 114,0 13040 14640
3 3.0 19.0 35,0 5140 6740 a83.0 99.0 11540 13140 14740
a 4.0 20.0 3640 5240 6840 8440 10040 11640 132.0 148.0
5 5.0 2].0 37.0 53.0 69.0 8540 10140 11740 133.0 149.0
6 ; B0 0.0 0.0 5.0 7040 8640 10240 118.0 13440 15040
7 s 0.0 0.0 0.0 0.0 7140 87.0 103.0 119.0 135.0 15140
a 0.0 0.0 0e0 0.0 7240 8840 104 .0 120.0 13640 15240
9 . 0.0 0.0 0.0 0.0 7340 89.0 105.0 121.0 137.0 153.0
10, 0.0 0.0 0.0 0.0 7840 90.( 10640 122.0 B.0 TeD
11 0.0 0.0 0.0 0.0 7540 91.0 107.0 123.0 0.0 0.0
12 0.0 0.9 0.0 0.0 7640 92,0 10840 12440 0.0 0.0
13 13.0 294D 2540 61e0 770 93.0 109.0 125.0 0.0 040
1a 18,0 30.0 4600 6240 7840 9440 110.0 12640 0.0 040
15 15,0 3140 47,0 6340 79.0 9540 111.0 127.0 0.0 040
16 1640 3240 48.0 6440 8040 9640 11240 128.0 0.0 0.0
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MATERIAL NUHBEI; AT EACH NOgE

ROW / COL 3 a_. 5 6 7 8 9 10
1 T<0 T<0 T<0 T<0 1.0 T+0 Te0 1.0 720 T+0
2 1.0 1.0 1.0 1.0 1.0 1.0 140 1.0 1.0 1.0
5 MAT.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
a 2. 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
s (M 210 220 250 2.0 2.0 2.0 2.0 220 2.0
6 7Y (1YY (7Y 2.0 2.0 250 2.0 -0 2.
7 INTERFACE 0.0 /o.o 0.0 220 2.0 210 2.0 2.0 2e0
s 0.0 0.0 0.0 0 2.0 0 2. 0 .
o NODE (1/2 MAT. 1 9.0 0.0 9:9 2.0 2.0 2.0 2.0 2,0 250
10 . +9 040 0. 2.0 .0 2. . 50 (]
11 AND 1/2 MAT. 2 0.0 MAT:2 520 0:0 2.0 2.0 2.0 2.0 0.0 040
12 040 Q29 0a 2.0 2.0 250 2.0 040 0.0
15 BY VOLUME) =75 EPY ETY ETY 200 2.0 200 2.0 020 0.0
14 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 0.0 0+0
15 2.0 2.0 200 3.0 2.0 2.0 200 2.0 040 0.0
16 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 040 0.0
CAPACITANCE AT EACH NODE
ROW 7 COL a 4 5 6 7 g ° 10
1 . =5 TOR3E-02  D.063E-02  0.640E=02  0.632E-02  O0+6AZE—07 —0:6306—0F 0.0643t-00 —0.0632=05  0-T03E=01
2 0.12AE=01 0,963E~02 0.963E=02 0,882E-02 0.682E-02 0+642F-02 0e642E-02 0s643E-02 0.963E-02 0e193E-01
3 0.2126-01 0e159E~01 0.159E-01 04106E-01 04106E-01, O0s106E-01 0e106E-01 0-106F-01 0e159E-01  0-318E-01
a 0.167E-01  D.125E-01 0.125E-01 0.A36E-02 0.B36E-02 0.A36E-02 0.836E-02 O0.836E~02 0e1256-01 0.251E~01
5 0.A3AE-02 0.627E-02  0.627E-02  0.41AE-02 _ 0e627E-02 O0.A36E-02 0eR36E-03 O0.B3I6E-02 0s125E-01 0+251E-01
A oD 00 T8 50 0.418E-02 0.836E-02 0.A36E-02 0.838E—02 04125E~01 51E-01
7 0.0 0.0 0.0 0.0 0.418E-02 0.A36E-02 0.8366-02 0.B36E-02  041256-01 S1E-01
A 040 0.0 0.0 0:0 0.41AE-02 04B36E-02 0s+B36E-02 O0.BIBE-02 0.125E-01 51E-01
9 0.0 0.0 0.0 0.0 0.41RE-02 0.836E~02 0.836E-02 0.627E-02 _ 0e627E-02 __ 0a125F=01
10 0.0 0.0 040 0.0 0.A36E-07 04167E-01 Ne167E-01 0.B36E~02[—TH .
11 0.0 0.0 0.0 0.0 0.R36E-02 0e167E~01 O0e167E-01 0.B36E-02]| 040 020
12 020 020 020 030 0.836E-02 0.167E-01 0s167E—01 0.B36E-02|. 0.0 0+0
13 0eR3AE=02  0s627E=0Z  0s627E-02  O0+41AE=0Z  0.6276-02 0.836E-02 0.8366-02 0.418E-02] 0.0 0.0
14 0.1676=01 0.125E-01 0s125E=01 0.B3AE-02 O0+A36E-02 O0+A3IGE~02 0.B36E-02 0.418E-02| 020 0.0
15 0.157E~01  0.125E-01 0.125€-01 0.B36E-02 0sB36E-02 0+836E~02 0eR36E-02 0.418E-02| 0.0 0.0
16 0.R36E-02  0.627E=02  04627E—02  0.418E=02  0.418E-02 0.418E-02 0.41BE~02 0.2006-02] 0.0 0.0
CONDUCTANCE IN X-DIRECTION
ROW / CNDL 1 2 3 4 5 [ 7 B 9 10
1 B 7E5F=02  D0.ARIE-02  0.106E-01  O0.137E~01  O0.132E-01  0+1326-01  0.1356-07 0.1066-01 G.SABe=0%
2 0.755E~02 0.881E-02 0.106E-01 0.132E-01 0e132E-01  0s132E—01 0e132E-01 0.1066~01 0.SBBE-02
3 0.139F-01 0.162E-01 0.19SE-01 0.263E-01  04233E~01 0s243E-01 0.243E-01 0.195E-01  0.10RE-01
a 0.127E-01  0,148BE~01  0<17RE-01  04222E-01 0e222E-01 0s2226-01 0.222E-01 0.17BE-01 0.987F-02
s 0.634E-02 _0.740E-02  0.8BAE-02 0.1116-01  0.222E-01 04222E-01 04222E-01 O0.17BE-01  0.9B7E-0%2
pe 50 ] 50 540 0.222E-01  0.222E-01 042226-01 0+178E-01 0+987E-02
7 040 0.0 0.0 0.0 0.222E-01  04222E-01 0e222E-01 04178E-01  0.987E-02
8 0.0 0.0 0.0 0.0 0.222E-01  0.222E-01 04222E~01 0+17BE-01 0.OR7E-02 0\
° 0.0 040 0.0 0.0 0.222E-01 0,222E-01 0.222E-01 0+B8BE~02 __ 0:493F=02 :
10 0.0 0.0 0.0 0.0 0.884E-01 0.463E—01 0e484E-01 0e0 . 5 AN |
11 0.0 0.0 0.0 0.0 0.444E—-01 0e444E-01 04484E-01 0.0 0.0
12 040 |00444E-01  0.,844E-01 0.464E—01 0.0 040 ZERO VALUES
13 . = . = . =H “1TTE=GT  04222E-01  0.222E-01 0.222E-01 040 0.0 040
1a 04127E-01  0.148E~01 0e17BE-01 0.222E-01 0s222E-01 0¢222E-01 0e222E-01 040 040 0.0 SINCE THERE
15 0,1276-01  04148E-01 0.178E-01 0.222E-01 0.222E-01 0e223E-01 0e222E-01 0.0 040 040
16 0.634E-02  0.740E-02 _ 0.BBBE-02  0e111E—01 0e111E=01 0.111E-01 0.111E-01 0.0 040 o.o ARE NO NODES

TO THE RIGHT
OF THESE
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ROW / COL a S 6 7 8 9 10
1 ? “520E- w5 T 0.353E-01  0.353E=0T U0s353E-01  0.353E-0T D.353E-0T  0.523E=01 0.105F 00
2 0.705E-01  0.529E-01  0.529E-01  0e353E-01  0,353E-01  0¢3S3E-01  04353E-01 0.353E-01 0.529E~01 0.106€ 00
3 00444FE~01  04333E~01  0.333E~01 0.222E-01  04222E~01  04222E-01  04222E-01  0.222E~01  04333E-01 0. 666E-01
a 0e484F=-01  0e333E-01 0.333E~01 0e222E-01 0,222E-01  04222E-01  0+222E~0]  0+222E-01  0e333E-01 0.666E-01
5 . . 0.0, 0s111E-01  0.222E-01  04222E-01  0,222E-01  04333E-01  0.666E-01
6 0.0 0.0 0.0 0.,111E-01 0+222€E-01 0e222E-01 0.222E-01 0+333E~01 0s666F-01
7 0.0 0.0 0.0 0,111E=01  04222E-01  0s222E~01  04222E~01  04333E-01 04666E-01
a 0.0 0.0 040 04111E-01  04222E~01  0e222E-01  0,222E~01  0u333E-01 0.R66E-O1
9 0.0 0.0 0.0 0.740E-02  00148E-01  0s148E-01 0.740E~-02 __0s0
10 0.0 0.0 0.0 0.555E~02  0e4111E-01  0s111E-01  0.555E-02 [ 0.0
11 0.0 0.0 040 0.5S5E-02  0s111E-0 0,111E~01  0.555€=02 | 0.0
12 020 Q 020 0,740E-02  0e14BE-01  0.148€E-01 0.740E-02 | 0.0
13 0 IIFE-DT  0e333E-01  0.222E-N1Y\  04222E-01  04222E-01  0e222E-01 0,111E-01 | 0.0
1a 0e4444F-01  04333F-01  04333F-01  0.222F-01 \ 0,222E-01  0.222E-01  0,222E-01 0,111€-01 | 0.0
15 0,464E=01  04333E~01 0¢333E-01 0.222F-01 \0e222E~01  0+222E~-0! 0¢222E-01 0.111E~01 | 0.0
16 2.0 0.0 0.0 040 Q.0 040 0.0 0.0 0.0
N\
T ZERO VALUES SINCE THERE ARE NO NODES BELOW THESE
[MITIAL TFMPERATURE NISTRIBUTION DEGWR
ROW / €O 1 2 3 5 6 7 8 9
1 A0 0 66040 R60 40 66040 66040 66040 66040 66040
2 660.0 660.0 6600 66040 66040 66040 66040 66040
3 66040 660.0 656040 66040 66040 660.0 660,0
4 66040 660.0 656000 66040 66040 66040 66040 66040
s 660,0 660,0 6600 66040 660.0 66040 660.0 66040
6 0.0 G 0.0 66040 66040 66040 660,0 66040
7 0.0 0.0 0.0 66040 66040 66040 66040 66040
8 0.0 0.0 0.0 66040 66040 66040 660.,0 66040
9 0.0 0.0 0.0 66040 660.0 66040 66040 66050
10 0.0 0.0 0.0 66040 66040 66040 66040 T«0
11 0.0 0.0 0.0 660.0 66040 66040 6600 0.0
12 0.0 0.0 0.0 66040 66040 66040 66040 0.0
13 66040 6600 660.0 660.0 66040 66040 660,0 0.0
14 660 .0 660.0 660.0 660.0 66040 66040 66040 0.0
15 660.0 66040 66040 660.0 66040 66040 66040 0.0
16 6600 660.0 66040 66040 660.0 66040 6600 0.0

CONDUCTANCE IN Y-DIRECTION
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x4%x%% T | M E = 0,1000E 02 5 E C O N D S #kkkx FLIGHT CONDITIONS
XMACH= 3,800 ALTITUDE= 48136.5 VELOCITY= 3678474 ANGLE OF ATTACK= 20.00 -—— AT TIME 10 SECONDS
AVERAGF HFAT TRANSFER COEFFICIENTS BTU/SEC-FT**2~DEGeR AVERAGE OF H AT TlMEs U. AND 10' SECONDS
ROW 7 COL 1 2 a 6 7 8 5
1 0-20RE=01  0.208E=01  0.2086=01 O0.30AE= TI0eE- = : = " =
2 . 0.0 . 0.0
3 0.0 0.0 0.0 0.0
a 0.0 0.0 0.0 .
s 0s300E-01  0:3Q0E-01 _c0+300E-01 _ 0.300E-01 _ 0.300E-01 0.0 0.0 0.0 040 0.0
s 0 e0 . 0.0 . 0.300E~01 040 0.0 0.0 0.0 0.0
7 0.0 Ata 0.0 0.0 0.300E~01 040 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.300E~01 0.0 0.0 0.0 0.0 0.0
9 0.0 COOLANT 0.0 0.0 0.300E-01 0.0 0.0 0.0 0.0 0.0
10 0.0 H 0.0 0.0 0.300E-01 0.0 0.0 0.0 50 50
11 0.0 Ueu 0.0 0.0 0+300E-01 0.0 0.0 0.0 0.0 0a0
12 030 020 030 20 0.300E~01 0.0 0.0 0.0 040 0.0
13 B e ABOF 81 0e300E—0T  0s300E=01 — 0+300FE=01 — 0.300E-01 0.0 0.0 0.0 040 0.0
14 0.0 0.0 . . 0.0 0.0 0.0 0.0 0.0 0.0
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 040
16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AVERAGE OF HA AT TIMES 0. AND 10. SECONDS
AVERAGFE HFAT TRANSFER COUPLINGS BTU/SEC~NEGWR
ROW 7 CNOL 4 5 6 rd 8 9 10
1 n = =5 TGRRE-03  0.31ZE-03 0312603  0.31Ze-03 0.3T2E-03 0-3T2t-03 G.56AE-03  0.935F=03
2 0.0 0.0 0.0 . 0.0 0. 0. 0.0 .
3 0.0 2o 0.0 0.0 040 0.0 0.0 0.0 0.0 0.0
P 040 040 0.0 0.0 0.0 0.0 0.0 0.0 0.0 040
5 0.900F-03 0.575E-03  0.675E-03 0.450E=03 _ 0.450E-03 0.0 0.0 0.0 0.0 0.0
‘ Iy 5o o G0 T. 0.4506-03 0.0 0.0 0.0 0.0 0.0
\ 7 0:0 2.0 0.0 0.0 0.450E~03 040 0.0 0.0 0.0 0.0
A 0.0 0.0 0.0 0.0 0.450E~03 0.0 0.0 0.0 0.0 040
| 9 540 0.0 0.0 0.0 0.450E-03 0.0 0.0 0.0 050 0:0
i 10 0.0 0.0 0.0 0.0 0.900E-03 0.0 0.0 0.0 G0 G0
11 0.0 0.0 0.0 0.0 0.900E~03 0.0 0.0 0.0 0.0 0.0
12 X 0.0 010 030 0.900E-03 040 040 0.0 040 040
w 13 De900F—03  0s675E<03  Deh7SE-03 ~0saBOF—03  0.450E-03 0.0 0.0 0.0 0.0 0.0
‘ 14 . o 0.0 040 0.0 0.0 0.0 0.0 0.0 040
‘ 15 0.0 0.9 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0
16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 040 0.0
AVERAGE OF Tow AT TIMES 0. AND 10. SECONDS
AVERAGF ANTARATIC WALL TEMPERATURE NEG«R
ROW 7 CAL 1 2 3 s s 6 7 a 2 10
1 TT82.1 FLETY TTAZ.1 118241 TTB2.1 1821 TTA2:1 176271 T8+ 1 1BZeT
2 0.0 0.0 0. 0. 0.0 w0 0. 0.0 . 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
s 66040 66040 66040 66020 66040 0.0 0.0 0.0 0.0 040
6 0.0 () 0e0 0:0 66040 040 9:9 040 0.0 040
0. 0.0 0. 66040 0.0 0. 0.0 040 0.0
8 0.0 CO0OLANT 040 0.0 66040 0.0 040 0.0 040 0.0
9 0.0 TEMP 0.0 0.0 66040 0.0 0.0 0.0 040 Q30
10 0.0 . 0.0 0.0 66040 0.0 040 0.0 50 50
1 0.0 0.0 0.0 0.0 66040 0.0 040 0.0 040 040
12 020 0:0 0.0 020 66040 0.0 0.0 0.0 040 040
13 EE60.0 56040 €604 0 56040 66040 0.0 0.0 0.0 0.0 040
14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 040 0.0
15 0.0 0.0 0.0 0.0 0.0 0.0 040 0.0 0.0 0.0
16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
‘ .
!
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TEMPERATURES AT THIS TIME DEG.R
ROw /7 COL 2. C3 2 [ 7 B 2

1 70445 70347 70142 700.0 69940 6982 6976 697a1
2 700.9 700.1 697448 69602 695,41 694 .2 693.6 693.1
3 659840 6972 694,42 692.8 691.5 69046 69040 6895
a 694.3 69046 68R.4 6868 685.8 68502 684,48
5 £92.9 HRReS 68442 68243 6B1.4 680.9 6R0.7
6 0.0 0.0 6779 677.7 67708 6772 6773
7 0.0 0.0 67367 673.8 67349 67442 6740.6
A Q.0 0.0 67005 6708 6711 717 87248
Qq 0.0 0.0 66840 66842 66847 6697 67240
10 0.0 0.0 664.8 6650 66541 6653 Oeh)
11 0.0 0.0 66242 66243 66243 6A2a8 0.0
12 0.0 0.0 665049 660.9 6609 660.9 0.0
13 660.6 66044 66048 66045 660.5 660.5 0.0
14 6606 6604 66063 66043 66043 660673 Oel
15 66046 660.8 660,3 66043 66042 6602 0an
16 66046 A60e8 66043 660e? 66002 66042 0.0 0.0

STEADY-STATE TEMPERATURES FOR BOUNDARY CONDITIONS

STEANY-STATF TEMPERATURES FOR THE RNUNNARY CONPITIONS AT THIS TIME DEG.R FOR THIS TIME INTERVALS OF 0 TO 10 SECONDS
{raw 7 cnL ) 3 a 5 & 7 8 o 10
1 LLITS! B58.5 AE7eS A56+6 CETTy) AS5.A 75640 B55e4 A57+1 R58+5
2 ARA L3 85546 A5a.6 AR3.7 A5341 85340 853, AS4.2 AGS A
3 AS3.5 A52.9 as51.8 A5047 RGO 8ac.a a50.4 85341
a R89.5 RAR.T Ba7.5 R4S, Aba s Aaa.s 8454 Aa9.1
= R&Seh 844.8 As3Ls Asle3 83747 B3Be7 Ra0.2 BaS.a
A ) B0 D 5.0 R27.8 A32.5 A34 A A8D.2
7 0.0 9.0 0.0 0.0 R5040 A2 601 829.4 A39.6
A 0.0 0.0 0.0 0.0 R1246 A19.3 823.a A37.9
5 0.0 0.0 0.0 0.0 80541 Alled 81741 83743
10 0.0 0.0 0.0 0.0 79348 79729 799.0 Tl
1 0.0 0-0 0.0 0.0 77546 783.0 783.5 0.0
12 0.0 030 2s0 040 76841 77145 772.0 0.0
13 Taaen TE6.% 757 7501 76040 76507 76643 0.0
14 745.9 74749 75140 75449 75Re5 76301 763.7 0.0
15 74648 74847 75147 755.0 75749 76147 762.2 040
16 76740 7490 7519 75541 75746 76122 76147 0.0
INTEGRATED HEAT INPUT AT EACH NADE ATU /POSITIVE VALUE INDICATES HEAT GAIN
ROW / COL 1 2 a s 7 A 9 10

1 0 EPY T o] o5 -5 o5 T35 7.3 e
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
a 040 040 0.0 0.0 040 0.0 0.0 0.0 0.0 0.0
5 4-0.3 -0.2 —0.2 —0s1 -041 0.0 0.0 0.0 0.0 00
6 B0 540 5.0 60 ~0.1 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 ~0.1 0.0 0.0 0.0 040 040
a 0.0 0.0 0.0 0.0 -0. 0.0 0.0 0.0 040 040
s NEGATIVE o.o 0.0 8.0 0.0 ~0.0 6.0 6.0 0.0 010 Q.0
10 . 0.0 0.0 040 ~0.0 0.0 0.0 0.0 o0 50
11 VALUE 0.0 0.0 0.0 0.0 040 0.0 0.0 0.0 040 040
12 9s0 020 050 010 -0.0 0.0 0.0 0.0 0.0 0.0
15 INDICATES =% =00 ~0.0 =040 -0.0 0.0 040 0.0 0.0 0.0
1a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 040
15 HEAT LOSS 4.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 040
16 | o-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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9

ECOND
*kkk%x T I M F = 02000 02 S € C O N D S *¥kxx ?.IN[i;EsTEP
XMACH= a.5k00 ALTITUDE= S2273.0° VELOCITY= 4453.24 ANGLE OF ATTACK= 20.00
AVERAGE HFAT TRANSFER CNEFFICIENTS BTU/SEC-FT¥*2-NDEG.R
RNW / CNL 4 S [ 7 a 9 10

1 0.2426-01 0.242FE-01 0+242E-011 0.242E-01 0e242E-01 0.2a2E~01 0.242E-01 Oe242E-01 0s.242E-01 0.242F =01
2 N.0 0.0 0.0 «0 . o0 Oe 0.0 0e0 040
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0e0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0«0 0.0 0.0 0.0
s 0.,300F=-01 0.300F-01 0+300E-01 0. 300E-01 0+300E-01 0.0 0.0 0.0 0.0 0.0
A De0 0.0 0.0 D0 0+300E-01 (%3] 0.0 0.0 0.0 0.0
7 N0 0.0 0.0 0.0 0.300E-01 0.0 0.0 0«0 0.0 0.0
a8 N.0 0.0 Q0.0 0.0 0.300E-01 0.0 0.0 0.0 0.0 De0
Q Ne0 0.0 0.0 0.0 0.300E-01 0.0 0e0 0«0 040 D90
10 Nae0 0.0 0.0 0.0 0.300E-01 0.0 0e0 0.0 00 040
11 0.0 0.0 0.0 0.0 0«300E-01 0.0 0.0 0.0 0.0 N0
12 040 Q40 Q:0 040 0«300E-~01 00 0.0 0.0 0.0 0.0
113 0.300F-01 0.300E-01 0.300F=~01 0.300F-01 0+300E-01 0.0 C.0 0.0 0.0 0.0
14 Ne0 0.0 0.0 0.0 0.0 040 0.0 0.0 0.0 0.0
15 N.n 0.0 0.0 0.0 0.0 0.0 0.0 0.0

164 0.0 0.0 0.0 0.0 0e0 0.0 0e0 0.0

AVERAGF HFAT TRANSFER CNUPLINGS BTU/SEC-DFGWR
3

RAW 7/ CNL I a S 6
1 0.7276-03 DeS45F-03 0«545F-03 D+368F-03 D.36aF—02 e
2 N 0.0 0.0 0.0 -
3 0.0 0.0 N0
a4 N0 0«0
5 N0.,900F—-03 0.675F~-03
6 O Ce
7 0.0
---~___~_2____¥ 0.0
Nan

SHEET 4.4 OUTPUT DATA FOR COOLED PANEL PROBLEM (REFER TO FIGS. 9 & 10(SHEET 8 OF 8)
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4.5 SAMPLE PROBLEM FOR SLAB GEOMETRY

saniple problem., Aluminum was used throughout the slab and hence TAU = 0.

This sample problem illustrates the use of the option to input the convective
heat transfer coefficients, h, and adiabatic wall temperatures, T AW’ as functions of
time and distance along the top surface rather than have CAVE calculate them based

&

on a flight trajectory. The values for h that were input were based on the equation
h =0.005 + 0.0075 cos(5 Tx)

The adiabatic wall temperature was taken to be constant with respect to both time

and distance.

Since the slab is rectangular in shape, the output is particularly easy to read;
a row in an output array giving the values associated with a row of nodes. The type
of output is the same as was described in detail for the cooled panel geometry
(see subsection 4.4).
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RIAL PROPERTIES (CONSTANT)

. — AX'S
«01% .0

, ﬁg lsNSULATION OR SECOND LAYER
<—— BLANK CARD -— :
460. 42 ) } INITIAL TEMPERATURE ALL ONE MATERIAL

SIGNIFIES THAT H AND Taw WILL BE READ IN RATHER THAN CALCULATED BY CAVE

0 172.8 20222 «215
1 02 .02 02 «02 1
15 5 «030

TABLE OF H VALUES FOR 2 TIME VALUES AND 8 X VALUES

. K
«NOSBY «NOSR9
« 00500 .N0S00

NOTE THE TIME AND X VALUES HAVE
TO BE THE SAME IN THESE TWO TABLES

0. 1000,
24600 2460

TABLE OF TaAw VALUES FOR 2 TIME VALUES AND 8 X VALUES

BLANK CARD AT END OF TABLES
or 200, 200, 600+ 200+ 1000. ) TIMESTEP INTERVALS ARRAY

SHEET 4.5 INPUT DATA FOR SLAB PROBLEM (REFER TO FIG. 11HSHEET 1 OF 6)
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EEERARAKEHEERREER R KRR
* -

* CAVFE CNDE =

NO' OF NODES :t-t-t-x AEEE RN FhE -:
ALONG TOP SURFACE L M RO OFNODES™  No. OF EIGENVALUES NE
6 SURFACF ELFMENTS-- ’(;OHS BY “;nLUHNS' GIVES ‘g/;LEuENTS 3 DOMINANT MNDESes s REQUIRES 1139 wORDS OF MEMDRY
ECONDNNMIZE « o o+ RENUCE DIMENSION DF S AND VALUE NF MWORDS FRDM 12000 TOWARDS 1320 +—— VALUE REQUIRED FOR THIS PROBLEM

VALUE REQUESTED IN CAVE

EEREEEAR AR EEREERNEE N R AN AR R RR AR AR NS R N R ER SRR R RN AR RE AR RN EK R RS AE RS R R KR E R AR KR SR AR K EE XX R X AR AR AR AR AR R R AR RR R KK

RUN N6e] SLAR WITH H PRESCRIMED AS FUNCTIDON NF X

SEEREEEARERERREARR SRR AU ELSERRRRETERERNESE X R EER I TR N XXX AR SR AR XA EABARS A SR AR R XS AR R ERE RN R KR E B KRR AR RS KRR B E AR R SR RER RS

FINITE SLABR PROALEM

Ut &F

LENGTH(X)= 041000E 00 FTY W
WIDTH(Y)= 0,1000F 00 FT PR 105‘“
TAU= 0,0 T \“?\)
EMISSIVITY= 0.0
RANIATION RACKGRMUND T= 0.0 DEGeR
1 PELX(T)
1 0.1000€-01 2 0+2000F-01 3 0.2000E-01 4  0.20006-01 5  0.2000F-01
A 0.1000£-01
NDELY (1)
1 0.5000E-02 2 0.1000E-01 3 0.1000E-01 4 0.1500E-01 S  0.1500E-01
5  0.1500E-01 7 0.3000F-01

AEEEEARRR AR SRR EEN TR ENE R RGNS A A SRR R AR ARG RS RS R AR R AR R E B R RS R E R E R ER R AR R E R R R AR R R SR KRR KR E SRR R AR AR &
MATERIAL PROPERTIES cONSTANT
MATERIAL 1 RHD=172.80 LBM/CU-FT K=0402220 BTU/SEC-FT-DEG.R CP=0.2150 BTU/LAM-DEGJR MATERIAL

PROPERTIES

EEAREEERRE AR SRS R EERSEAERBE XSS SR AN R AR AR A AR R R RS RN R AR ER AR KRN AR R RSN SRR AR AR AR AR SRR KRR R R AR N R RS AR R E Rk

SHEET 4.5 OUTPUT DATA FOR SLAB PROBLEM (REFER TO FiG. 11) (SHEET 2 OF 6)
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2 L]
0.0

0.0

0.5000F-02
0.2000F-01
0.4000F-01
0e«6000F-01
0.8000FE-01
0.9500€E-01
0.1000F OO0

2 L]

0.0

040

0¢S000F~02
0.2000F-01
0.4000E-01
0+ 6000F-01
0eAOOOF~01
0+9500E-01
0.1000F 00

o ]

0.0

De125DE~
O0e124RE-
Oe1214E~
0.1107E~

01
01
01
o1

0.9410E-02

0e7320E~
0+5R90E-
0+5000F -

0e0

0.2460E
0+2460E
0.2460E
042460F
0+2A60F
042460E
0.2460E
Oe2a6K0E

02
02
02

04
04
0a
04
0s
0a
0a
04

H AND

0. 1000E 04
0+1250E-01
0.124BE-01
0.1214E-01
0.1107E-01
0+9410E-~02
047320E-02
0.5890E-02
0+5000F-02

0.100NE D4
0.2460E 04
0«2460E 04
0+.2460E Oa
0+2460E 04
0.2460E 04
0«2460€ 04
0.2460E 04
0+24/0€E 04

T ABLE
TAW AS FUNCTIONS OF TIME AND DISTANCE

0.0
0,0
0.0
0.0
0e0
0.0

TABLES READ IN FOR
H AND TAw

0.0

o
.

000000000 000CCOCD

0O0VODOOD0 DOV OOOVO0

00000000n 0000000
IR ERR)
00000000 ODOECOO0O0

RERRARRRER S AN R KR RR SRR KRR RN RN AR SR RN R AR KRR AR B R KR AN B R AR R SRR AR R R R KRRk RN KRRk Rk Rk Rk kR kR kK k&

NODE NUMAFRS

NOD
HEATING ON THIS FACE

NETYTWORK

ROW / COL 2 5 6
1 T3 L7 5.0 kLY
2 2.0 9.0 30.0 37,0
3 3.0 10.0 31.0 3s.0
a ale 11.0 32.0 39,0
5 SeC 12.0 33.0 40.0
6 6.0 13.0 3.0 41,0
7 7.0 1440 35,0 42,0
MATERIAL NUMBER AT EACH NNDE

ROW / CAL 1 S L.
1 T.0 3] T.0 o0 T°0
2 1.0 1.0 1.0 1.0 140
3 1.0 1.0 1.0 140 1.0
. 1.0 1.0 1.0 140 1.0
5 1.0 1.0 1.0 1.0 1.0
s 1.0 1.0 1.0 1.0 1.0
7 1,0 1.0 1.0 1,0 e

ONE MATERIAL
THROUGHOUT

SHEET 4.5 OUTPUT DATA FOR SLAB PROBLEM (REFER TO FIG. 11) (SHEET 3 OF 6)
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CAPACITANCE AT EACH NODE

ZERO VALUES SINCE THERE ARE
NODES TO THE RIGHT OF THESE

ZERO VALUES SINCE THERE ARE NO

NODES BELOW THESE

ROW / COL 1 2 2 4 1 &
1 0. 1R6E-02 0e372E-02 0.372€E-02 0.372E-02 0.,372E-02 Oe«18B6E~-02
2 04372F-02 0.743E-02 0.743F-02 0e«743E-02 0+743E~02 0.,372€E-02
a 0.372F~02 0.743E-02 0e743F-02 0.743E-02 0.743E-02 0.372E-02
a 0.557F-02 0«.111F-01 0+.111F-01 O0s111E-01 OeI111E~01 0.557E-02
5 0.557F-02 04111F=01 0. 111F-0] 0+111F-01 0.111E-01 0.557€E-02
3 0«557F=-02 0.111E-01 N0a111F=-N1 0+111E-01 0+111E-01 0.557€-02
7 0«111F-01 0,223F~01 0e223F-01 0.223F-01 0e223E~-01 Os111E-01
CONDUCTANCF IN X-DIRECTIDN

RDW /7 CNL 1 2. 3 a 5 5
1 0+760F-02 0.55%E-02 D e555F-02 0.S555€E~02 0.740E~02 0.0
2 Os14AF=01 0.111E-01 O« 111F=-01 0.111E-01 O+ 16RE-01} 0.0
3 0.14RF-01 0.111F-01 0.111F-01 0.111F-01 O+148E~01 0.0
4 04222F-01 0«1/6E-N1 0. 16AF-01 O+166E-01 0.227E-01 0 o O atffemmsemesd
< 0.,222F=01 «166F-01 0.1AAF=01 0+ 16H6F-01 04222FE-01 0.0
(] 0+222F=-01 0+166E-01 0+ 16AF-01 0.166F-01 0.222E-01 0.0
7 0.444F-01 0.333F-01 0.333F-01 0.333F-01 0.844E-01 0.0
CONDUC TANCF IN Y=DIRFECTINN

RNw / CNL X 2 3. a 2 L
1 0.222F-01 0s.44aF-01 O.44aF-0} Osa4aF-01 0.844F-01 0.227F~01
2 0W?227E~01 Oe.a84F=-01 O.88aF-01 D+.a84E-01 0.444E-01 0.2P72€E-01
3 O0e17ME-01 04+355E-01 0.355F-01 04355F-01 0e355E~01 0+17AF-01
4 Os1aAFE-01 0+296F-01 0.296F=-01 0.296E~01 0.29AE-01 0,148FE-01
5 0e14AF-01 0.296E~01 0e296F~0 0.296E-01 0+296E-01 0s14RF=-01
[ 0+592F-02 0.11AF-01 0.11AF-01 O+11RE=-01 0.11mE~01 0.592E~0?
7 0«0 0.0 0.0 0.0 0.0 0.0
INITIAILL TFMPFRATURE DISTRIBUTION DEG.P

ROW 7/ COL 1 2 3 4 S 6
1 46040 460.0 4600 460.0 a460.0 ablel
2 46040 460.0 4A0.0 a60.0 a460.0 4600
3 460.0 460.0 46040 46040 46040 a60.0
4 460.0 460.0 46040 46040 46040 46040
5 4A0.0 a460.0 46040 460.0 460.0 460.0
[ 460.0 a6C.0 460.0 460.0 a460.0 46040
7 A460.0 460.0 ar0.0 460.0 460.0 660.0

(a A A A RS AR R 22 2 R s 2t L Ly R I E Nt T R R 2 Tl eIy

SHEET 4.5 OUTPUT DATA FOR SLAB PROBLEM (REFER TO FIG. 11) (SHEET 4 OF 6)
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AVERAGE HEAT TRANSFER COEFFICIENTS
1

EEL]

*% T | M E = 0.20006 03 S E C 0 N D S »+s+x ——— FIRST TIME STEP

BTU/SEC-FT*%x2-NEG.R

RNW / COL 2 3 .3 S (<]
1 0.125E-01 0.121E-071 0. TTTF=-0T $.041c~-02 O 732E-02 0.589E-02
2 0 0.0 0.0 . 0.0 0.0
3 0.0 0.0 0.0 0s0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0
S 0.0 0.0 0.0 0.0 0.0 0.0
& 0.0 0.0 Q0.0 0.0 0.0 0.0
7 0.0 0.0 Q«0 040 040 040
AVERAGF HFAT TRANSFER CRDUPLINGS RATYU/SFC-DEGR

RNW / CNL 2 3 4 S &
1 0,125E-03 0.243E-03 0.,22TF-07 0. TAAF-03 O0.146E-03 0.5B9E~C4
2 . 0.0 0.0 0.0 . O
3 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 040 0.0 0.0 0.0
5 040 0.0 0.0 0.0 0.0 0,0
6 0.0 0.0 0.0 0.0 0.0 0«0
7 0.0 0.0 8.0 0«0 0.0 0.0
AVERAGF ANTAMATIC WALL TFMPFRATURE DFGWR

ROW / CNL 2 3 a S -3
1 24A0.0 246040 288040 2a60.0 2460.0 2460,
2 0.0 0.0 0.0 Oe «0 «0
3 0.0 Dan 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0
S 0.0 0.0 0.0 0.0 0+0 0.0
[ 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0
TEMPERATURES AT THIS TIMF DEGLR

ROwW / CnL 1 2. 3 A S (-]
1 1293 .5 1292.9 12907 1287.6 TZ2Ra 5 1283.72
2 12A7.4 12649 12A542 1282.9 128047 12799
3 1282.1 12A1.7 12A0.5 1278.7 127741t 1276.6
a4 1276.4 1276.2 127543 127441 1273.0 127247
5 1271.1 1270.9 1270.3 126945 1268.9 1268,7
L] 12672 126741 1266.7 12661 126547 12655
7 26049 1260.9 12607 1260448 126042 126001
STEADY~STATE TFMPERATURES FOR THE BOUNNDARY CONDITINNS AT THIS TIME DEG.R

ROW /7 COL 1 2 .} 4 S [}
1 2867%.0 2460.0 2460.0 ~2460.0 248040 ca60.
2 2660.0 2460.0 2460.0 2460.0 2460.0 2460.0
3 2450.0 2460.0 2460.0 2460.0 2460.0 2460.0
a 2460.0 2460.0 2460.0 2460.0 2460.0 2460.0
B 2460.0 2460.0 2460.0 2460.0 246040 266040
6 2460.0 2460.0 2460.0 2460.0 246040 246040
7 2460.0 2460.0 2460.0 2460.0 246040 246040

-«———— AVERAGE OF H AT TIMES 0. AND 200.

<«——— AVERAGE OF HA AT TIMES 0. AND 200.

~—— AVERAGE OF Taw AT TIMES 0. AND 200.

-«———— TEMPERATURES AT TIME 200.

<——— STEADY-STATE TEMPERATURES
FOR BOUNDARY CONDITIONS
DURING TIME INTERVAL
0.T0 200.

SHEET 4.5 OUTPUT DATA FOR SLAB PROBLEM (REFER TO FIG. 11) {SHEET 5 OF 6)




TL

INTEGRATED HEAT INPUT AT EACH NODE ATU
1 2 3

ROW / COL
1

N3 s N

AVFRAGF HFAT TRANSFFER

ROW / COL

NRIA P U

AVERAGF
ROwW 7/ CNL

NIAPUN-

AVERAGF
RNW /7 CNL

NIPNDL NN -

29.1 56.7 51.8
0.0 0.0 0.0
6.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

xxxxx T

CNFFF1
R S \ e B
0.125E-01 0«121F-01 0«.111F=-01
0.0 0.0 0.0
0.0 0.0 0.0
Q=0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
00 0.0 0.0

HFAT TRANSFER COUPLINGS BTU/SFC-DEGsR
1 2 a

Ne125F=03 0.243E-03 0.221F-03
. 0.0 0.

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

ANJARATIC WALL TEMPERATURE DNFGWR
1 3

2 :
2a60.0 2460.0 24A00
0.0 0.0 Qa0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

TEMPERATURES AT THIS TIME DFEG.R
2

RNW / CNL 1 3
1 17hhe? 17659 176846
2 176246 17623 176143
3 17594 1759.2 175845
a4 17561 1755.9 17585.4
5 1752.9 1752.8 175248
6 1750.6 1750.5 1750.3
7 1746.9 174648 17467

STEADY=-S

RNW / CAL
1

1P UN

TATF TEMPFRATURES FOR THE AMUNDARY
1 2 z

2460.0 2460.0 246040
2460.0 2460.0 24

600

24A0.0 246040
2460.0 2460.0
2460.0 Dol
24 60

1

M E = 0.4000€E 03 S E C

CIENTS BTU/SEC-FT*¥2-DFGeR
3 a

0.941F-02
-

0.0

0.0

0.0

0.0

0.0

a
C«.1RAF-03

a
17627
1759.9
17574
175847

174
17465

CONNITIONS AT THIS TIME DEGeR
5

4
24600

5
0.732E-07

0.0
0.0
0e0
0.0
0.0
0.0

5
0el46E~03
0.0

6 NET HEAT INPUT TO EACH NODE
‘§:§ " UPTO THIS TIME

0.0

0.0

0.0

De 0

0 N D s sxess e NEXT TIME STEP

6
0.589E-02
.
0.0
0.0
0.0
0.0
0.0

6
0+5R9E-04
0

0.0
0.0
0.0
0.0
0.0
S 6
246040 7460.0
0.0 O
0.0 0.0
0«0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
5 6
1760.,9 1760e1
1758.6 1768.1
175645 17562
1754,.,0 1753.8
1751.6 175145
1749.7 1749.4
174644 174644
6

SHEET 4.5 OUTPUT DATA FOR SLAB PROBLEM (REFER TO FIG. 11) {SHEET 6 OF 6)
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4,6 . SAMPLE PROBLEM X~24C GEOMETRY

Figure 12 shows the grid network for the X-24C geometry considered as a
sample problem.

In many respects the input and output for this problem are similar to that of the
cooled panel problem presented in subsection 4.4. One of the differences is that

there are three materials here instead of two which affects the array of material

.numbers.

For the X-24C geometry a material number of 1, 2 or 3 at a node signifies that a
node is comprised entirely of material 1, 2 or 3. (Recall that the properties of the
materials is established via the input.) And a two-digit material number signifies that
the node is at an interface between two materials, with the tens digit giving the
material number for the upper material and the ones digit the material number for
thel.lower material at the interface. For example, node 54 is located at the inter-
face between the beryllium and the insulation, since beryllium has been set up to be
material 1 and the insulation to be material 2 we find the material number of node 54
to be 12. Material numbers are set up by subroutine X-24C and they provide a check
on whether geometry data has been inpi.t correctly to CAVE. (The input and output
listings on the following pages have been annotated.)



gl

‘(9
S &
S v *

RUN NOL NS.3®  xBac ceomeTry——— COMMENT CARD

. < NO RADIATION T
4504 200+ 625, 730?R0PER51;|5E.S 1zsoa/§P 2500,
0322 +03056 ~02722 .02845 -0222 o170 o119 } PROPERTIES OF MATERIAL 1 AS FUNCTION OF 4
>3 30°  .000806" e -578 -6e -3 ~———PROPERTIES OF MATERIAL 2
-g§ ”3(;;? -°f§§ eé? o3 o3 o1 ~—>~—PROPERTIES OF MATERIAL 3
'E’é? R 203 203 303 .03 RE .03 | NODAL GEOMETRY DATA
29 18 «10 « 048
B L A T ANGES /ANED TO EACH COMPONENT
trog 660- 165 1} INITIAL TEMPERATURE
3 5303 .65 ~——— REFX, CODEX, HMODI
s ) ~——— AIR PROPERTIES
Do 20, 30, 40t 120,
2509000 W32373:  £50%%5  o4a0%0: 532900z ¢ FLIGHT TRAJECTORY
20_; 20, 20. 20, 20
0. 10. 20, 30. a40.4 80a. 120, } T|ME STEP[NTERVALS ARRAY

SHEET 4.6 INPUT DATA FOR X-24C GEOMETRY PROBLEM {REFER TO FIG. 12} (SHEET 1 OF 9) .
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&
% X
S 5
RS af
O o
o &
Q§ A\ *khaagRpk RNk kKR Q‘a
. i’ * *
QQ\,Q T CAVE CODE * Q-°
\v Q} o ok i o o ol ok ke ook ok K ko ok
/N0.0F NODES
13 SURFACE ELEMENTS=-= 13 ROWS RY 13 COLUMNS GIVES 169 ELEMENTS DOMINANT MODESe « s REQUIRES 526A WNRDS DF MEMORY

FCONONNMIZF e+ +RFDUCE DIMENSION OF S AND VALUE OF MWORDS FROM 12000 TOWARDS coar———\VALUE REQUIRED FOR THIS PROBLEM
VALUE REQUESTED IN CAVE

KRR R Rk KRR R Rk Rk R SRR RN KRRk KRR R kR Rk N kR kR R R R R KRR A RN R Kk KR KRR R KRR R KRR KRR KR KRRk ko kR ko kR ko k k&

RUN NNe NS5.2 X24C GFOMETRY

L bl LA R et R e e L T I I R e Y Y 1 Tt ittt ]

X 2 a4 C GENDMETRY

S1= 0«2900€E 00 FT S2= 0.1R00E 00 FT
S2= 0.1000E 00 FT S4= 0.4000f-01 FT
W1l= D0«3000F-01 FT w2= 0.3000E-01 FT
w3= 03000E-01 FT wa= 0.3000F-01 FT
W5= 041500 00 FT w6= 043000E-01 FT

wW?7= 046000F-01

CONTACT RESISTANCE(1}
CONTACT RESTSTANCE(2
CONTACT RESISTANCE(3
CONTACT RESISTANCE(a

)= D0+5000E-02 BTU/FT*x2=-SFC-R
}= 045000E-02 BTU/FT**2=-SFC~R
}= 042000E-01 BTU/FT*¥2-5FC-R
}= 0.2000E-01 BTU/FT**2-SFEC-R

FEMISSIVITY= 0.0

RANTATINN BACKGROUND T= 0.0 DEGeR

1 DELX(T)

1 0+3000E-01 0.1000F-01 3 0.3000E-01 4 0+1000E-01 5 0.3000€-01
6 0.3000E-01 7 0+ 1000E-01 a 043000E-01 9 0+3000E-01 10 0+1000F-01
11 0.3000£~-01 12 0+1000E-01 13 0+3000E-01

1 NDELY(1)

1 0.1500E-01 2 043000E-01 3 0+3000E-01 a4 0+3000€=-01 S 0.+3000F-01
6 043000E-01 7 0+3000F-01 a 043000E-01 9 0+3000£~-01 10 0.32000E-01
11 0.3000E~01 12 3 0.1500E-01

0.3000E-01 1
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Sk

BARRRERENREAREERRER AR R B R KRR RN E KRR AR RN KRR KK RN AR RN KR R AR A SRR R R AR AR AR MR KRR SR AR AR AT R R R R AR KR KRR RN KRR KR kR

MATERIAL 1

MATERIAL 2
MATERTAL 3

RHO=114+00 LBM/CU~FT

RHO= 30400 ILBM/CU-FT
RHN=17280 LAM/CU-FT

M ATERTIAL PROPERTTIES
K=0.03220 BTU/SEC~FT~DEGR CP=0+3600
K=0403056 BTU/SEC-FT=DEGeR CP=0+4000
K=0.02722 BTU/SEC~-FT-DEG.R CP=0.4850
K=0402444 BTU/SEC-FT-NDEGeR CP=0,5400
K=002220 BTU/SEC~FT-DEG«R CP=045750
K=0401700 BTU/SEC-FT-DEGeR CP=0D+6400
K=0.01190 RTU/SEC~FT~DEG.R CP=0.8300
K=0.00001 BTU/SEC-FT-DEG.R CP=0.2400
K=0e02220 BTU/SEC-FT-DEGR CP=0+72150

ATU/LBM=-DEG.R
BTU/LRM-DEG.R
BTU/LBM-DEGeR
ATU/LBM=DEG+R
BTU/LBM=DEG.R
BTU/LRM-DEG.R
BTU/LAM=DEGeR

BTU/LAM=DEG.R
RTU/LAM=DEGeR

es0.00 bec.r y [VRSTMATERIAL
500100 DEG.R (BERYLLIUM) HAS
gsaies sece ¢ EMELRRNTRE
T=1250400 DEGeR
T=2500.00 DEG.R ] PROPERTIES

~—— 2ND MATERIAL (INSULATION)
——3RD MATERIAL (ALUMINUM)

AR AR KRR R R AR R Rk AR Rk RN RN R RN F R K E AR AR R AR R AR KK AR RNk AN Rk R R AR KR AR R KRR AR R R KRRk Rk kK&

TIME IN SECONDS
0.0

. 0.2000E 02
ALTITUDE IN FEET
0.4400F 0S5 0.5227E 05
VELOCITY IN FEET PER SEC.
0e2904F 04 0«.8453E 04
ANGLE NF ATTACK IN NDEGREES
0.2000F 02 0.2000E 02

0+3000E
OeH48BT7E
0+5078E
0+2000E

o2
a5
0a
02

T A
024060F
0+ 7400F
0«5R41F

0+2000E

BLES

02 0.1200€ 03
05 0.7400E 05
04 0.58615'04
02 0.2000E 02

FLIGHT

TRAJECTORY

TABLES

AR RN R R KRR AR ARk AR R RE R AR ALK R AR KR TR Rk A AR R Rk Rk R AR A Rk A AR R A AR AR AR ER R AR KRR X R R KRRk bk kR kTR R Rk X

NODE NUMAFRS
ROW / COL

P
D e

WROOBNIPNPUN=ZTUN~DOININLUWUN~

-

NODAL NETWORK PRINTOUT HAS
FORMAT SIMILAR
/TO SHAPE OF GEOMETRY

3 a 5 6 7 8 9 10
27.0 20.0 53.0 6640 79.0 3240 TOSe0 T1Re0
2Re0 a1.0 5440 6740 80.0 93.0 10640 11940
29.0 4240 55.0 AR 0 A1.0 10740 120
30.0 43,0 5640 69.0 A2.0 12

0.0 0.0 7.0 70.0 83.0

0.0 0.0 . 7140 84.0

0.0 0.0 0.0 72.0 RS.0

0.0 0.0 0.0 73.0 8640

0.0 040 7440 8740

0.0 0.0 82.0 7540 RB.0

37.0 5040 6340 7640 B9,0

3R.0 5140 6440 77.0 90.0

39.0 5240 6500 78.0 91.0
13
157.9J
15A.0

5.0

0.0

0.0

0.0

0.0

0.0

0.0
16740
168.0
169.0
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9L

MATERIAL. NUMBER AT EACH NODE
L 1 2

ROW 7/ CO!

10

1

2

3

L)

S

6

7

8

9
10
11

12

13

RO: / coL

2

3 23.0
a8

S -
6 0.0
? 0.0
8 0.0
9 0.0
10
11 .
12 3.0
13 3.0

9s0 0:0 NODE IS COMPRISED OF MATERIAL 3
0.0 0.0

o0 . oo _ _

929 8.9 NODE 54 IS AN INTERFACE NODE WITH MATERIAL 1
3°9 30 ABOVE MATERIAL 2

30 3e0

CAPACITANCE AT EACH NDDE
ROw /s COL

e =0 J.B58E-0 + 1Y 0e257E~0
0.273E-01 0+964E~-02 0+289E-01 04289E-01
0e998E-02 0.565E-02 0.200E-01 0.200E~01
Q IG6E=0 -] 0+.251E~-01 0+ 334E-01
0 2 0+251€E~01

. 0e167E-01
0.0 0.0 0.0 0.9 0.0 0+167E~01
0.0 00 0.0 0.0 0.0 0s167E-01
0.0 0.0 0.0 0.0 | 0.167E-01
1 Qa0 0+836E-02 0+251€E~-01}
1 =0 Oe =0 -0251E-01 0e33AE-01
1 O.111E-01 0.111E-01 0¢334E-01
1 0+557E-02 0«557E-0 167
ROwW 7 COL

Py =
04334E-01

WNSOOBNRAPUN=EUN~OOR~NP NP WA~

° - [:]
Oe1118~-01 2
0e167€E-01 0537802 0e167E-01
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CONDUCTANCE IN X-DIRECTION
1 2

o
D
WN=DOINIPAPUN—=EWN=OODININETWN -~

-

DUCTANCE IN Y-DIRECTION
cnL

D e

b.]
WRN=DOBINIPNAPUN=EAN=OODNDINE U~

- s e

3 a
0+198E-01 0.138E-0T 0. TGRE-0T 0., T58E-07

[+]
Oe198E-01 0.198E-01 0e¢19BE~O1 0+198BE-01 o] 0«198E-01 0+ 198E-01
0.0 Ts 04167 0e1676-01 o] 0s167E-01 0e167E=01
0.0 0.0 166 [+] 04333F-01 0. 333€-01
0.0 00 0 0e333E-01 00333E-01
0.0 0.0 0+333E-01 0+ 333E-01
0.0 0.0 0 04333E-01 0e333E-01
0.0 0.0 o 0.333E-01 0+333E-01
0.0 0.0 0.0 0+333E-01 0s333E-01
020 0.0 20 Q0 0,111E-01 0.333E-01 0e333E-01
0e16AF~01 O0e166E-01 0s166E-01 0e166E-01 0.222E-01 0.333E~01 0e333E-01
04333F~01 04333E-01 0333F-01 0+333E-01 0+ 222E-01 0«333E-01 04333E-01

O«.111E-01 04166E-01 0e166E-01

0.16AFE=01 0e1/6E-01 Oe166F=-01 O0el166E-01
1 12 T3

& 7
Q. 198E-01 0. 198E-01

— T

0.198€-01 0e198E-01
0.992E-02 0.198E=-01
040

ZERO VALUES SINCE THERE

818 9:3 2:0 ARE NO NODES TO THE
§§ §§ Z°:° / RIGHT OF THESE
0

. -
0+333£-01
O+ 166E-01

5 6
Qe264E-01 64E-01

3
0e264E-01 0.881E~- «264€E-01 BB1E-02

Y] 0.0 I 0.111F-01 0.737E-02 0.221E-01 0+221F-01 0e737E~-02
0.0 0.0 0.0 0.0, 0.110E-01 0.?219€E~-01 O 729E~02
0.0 0.0 0.0 0.0 D0 04.111E-01 Oes740E~02
0.0 0.0 0.0 0.0 0s111E-01 De740E-02
060 0.0 0.0 0.0 0s111E-01 O« T4OE-02
0.0 0.0 0.0 0«0 04111E-01 0s 740E~02
0.0 0.0 0.0 0.0 0 ] O.111E-01 0.740E~02

O0.111E-01 0.222E~01 0« 740E-0?

04219E-01 0e¢219E-01 0e729E-02

04222E~01 0e222E-01 04740E~02

Y 0.0 0.0 0.0

4
. . 0«BB81E~-02
0.300E-05 0.200E~-05 04600E-05 0.600E-05 0+200E-0S

0.264F-01
0e225£-05
C.111E-01
0.0

ZERO VALUES SINCE THERE
ARE NO NODES BELOW THESE

0.0 0«0 0.0
00 0.0 0.0
0.0 0.Q 0.0
0.0 0.0 0.0

= a0E- ==01
O:ZZZE-OI 0:7&05-02 0:222F~01
0.0 0.0 L R . S

LL
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8L

INIETIAL TEMPERATURE DISTRIBUTION DEG.R
ROW / COL 1 2 3 A S ] Z
66060 66040 660.0 660.,0 66040 5660.0
660.0 66060 660-8 660.3 S 6600 660.,0

bl
S e

W= SODBNIALWN =L WN =0 DD NPAP W~

/ cnu 1Y 12 13

—

BEEEEEE N RARERO TP RF E A AR SRR R R AR A E R AR E AR R AR AT AR AR R E R KRR RN AR AR IR RS KRR RN AR AR AR KRR KRR KK E R AR R R R AR AR kR AR R KR

xsxkk T I M E = 0.1000E 02 S £ € 0 N n 5 sxsxx=—— {ST TIME

XMACHZ 3.R00 ALTITUDE= 4R13645 VELNCITYS 367R.76 ANGLE OF ATTACK= 20.00-4—— FLIGHT CONDITIONS
AT TIME =10 SECONDS
AVERAGE HEAT TRANSFER COEFFICIENTS RTU/SEC-FT**2-DEG.R AVERAGE OF H AT TIMES 0. AND 10. SECONDS
ROW 7 COL 1 2 a 4 5 / [ 7 A 9

: 10
0.208E-01 0.20AF-01Y 0.20AF-071 Ue20BE-01 0.208E-0] D 20AF-01 0.20RF-01 0+20RE-01 0«708E-01
0.0 0.0 (o] 0.0

G.0 0.0 0.0 0.0 0.0
Qa0 0«0 0.0 ‘0.0 0.0
0.0 L0.0 . 0.0 0.0 0.0
0.0 0.0 0.0 0s0 0.0
0.0 0a0 0.0 0.0 0.0
0.0 0«0 0.0 00 0.0
0.0 020 0.0 0.0 0.0
1 0.0 0s0 0.0 0s0 0.0
1 0.0 0.0 040 00 0.0
1 0.0 040 0e0 00 0.0
1 0.0 0.0 0.0 0s0 0.0
RN 7 COL

W=D IDNRAFWN~EWN—=OODNINSWN—~

-
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6L

AVERAGE HEAT TRANSFER COUPLINGS "~ BTU/SEC-DEG.R
RD\]I /7 CoL

2 «0 . .
3 Oe0 0.0 0a0 0.0
4 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0
a8 0.0 0.0 0.0 0.0
9 0.0 0.0 0.0 040
10 0.0 0.0 0e0 0.0
11 040 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0
13 0 0.0 0a0 00
RNW /7 COL 1 13
1 04623E-03 0.208E-03 0e623E-03
2 0.0 Oe .
3 0.0 0.0 0.0
L 0.0 0.0 0.0
5 0.0 De0 0.0
6 0.0 0.0 0.0
7 0«0 D.0 0e0
8 0.0 0.0 0.0
9 0.0 0.0 0.0
10 0.0 0.0 0.0
11 0.0 0«0 0e0
12 Qa0 0.0 0.0
13 0.0 0.0 0.0

AVERAGE ADIARATIC waLL TFMPERATURE nNFG.R
. 3

RNW 7 -COL 1 2 k
1 118241 1182.1 11R2.1
2 . 0e0 NeD
3 0.0 00 0.0
4 0.0 0.0 0.0
5 0.0 0.0 0.0
6 0.0 0.0 0.0
7 0.0 OeN 0e0
A 0.0 0.0 Oe0
9 0.0 0.0 0.0
10 0.0 0.0 0.0
11 0.0 0.0 0.0
12 0.0 0«0 0en
13 00 0.0 [}
ROW 7 CNL 11 12 13
1 118241 11R2.1 11241
2 Oa 00 0.0
3 0.0 0.0 0«0
a4 0. 0«0 0.0
S 0.0 0.0 0.0
6 0.0 0.0 0.0
7 0.0 0.0 0.0
a OO0 0.0 040
9 0.0 0.0 0.0
10 0.0 0.0 0«0
11 0.0 0.0 0.0
12 0.0 0.0 040
13 0.0 0.0 Oe0

1 3 a
0e623E~03 0420BE-03 04623E-03 0.208E-03
0.0 ] 040

AVERAGE OF HA AT TIME 0 AND 10.

k3 6 7 8
0.623E-03 0.623E-03 04208E~03 0.623E-03
0.0 1] 0.0 0.0

. .0 . .
0.0 00 0.0 0.0
0.0 0.0 040 0.0
00 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0e0 0.0
0.0 0.0 0«0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 040 0.0

AVERAGE OF Taw AT TIME 0 AND 10.

B2 . a -
11R2.1 1182,1 1182,1 11R2.1
. . . 0.0
0.0 0.0 0.0 0.0
0s0 0e0 0.0 Q0.0
0.0 0«0 0e0 0.0
0.0 040 0.0 0.0
0.0 0e0 0.0 0«0
00 0.0 0.0 0.0
0.0 0s0 0.0 0.0
00 0e0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

9
0e623E-03
0.0
0.0
0o
0.0
040
0.0
Oe0
0.0
0.0
0.0
0.0
0.0

1 G
1182.1
Oe0
Ne0
0«0
0.0
00
NeD
0.0
00
Ne0
Ne0
0«0
0.0

10
0+208E~03
0.0
0e0
0.0
0e0
0.0
0«0
00
040
00
0.0
00
0e0

10

11R2.1
00
0.0
N0
0.0
00
040
0«0
N.0
040
Qe0
De0
0D
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08

TEMPERATURE AT TIME 10 SECONDS

TEMPERATURES AT THIS TIME DEG.R

ROW / COL 1 2 3. a s 6 7
1 72140 720.8 7305 720.17 7108 7155 TT9.%
2 715.6 715.3 71448 71443 71349 71346 713.6
3 T.0 0.0 65943 65943 65943 65943 6594 3
a 0.0 0.0 6593 6593 65943 65943 659.3
s 0.0 0.0 0.0 0.0 7] 659.3 659.4 65944
6 0.0 0.0 00 0.0 0 ] 659.5 659.5
7 0.0 0.0 0.0 0.0 0.0 65947 65947
8 0.0 0.0 0.0 0e0 040 659,65 659.9
9 0.0 0.0 0.0 0.0 0.0 6601 6601
10 0.0 0.0 Qe0 Q40 (6603 66042 66042
11 66048 660,06 6604 660.6 660¢3 660e3 66043
12 660e8 66044 660e8 65604 6604 66043 6603
13 £60.4 660,44 66044 66044 66046 660e4 6604
ROW / COL ] 12 13
1 730.9 T2Te2
2 715,S 7157
3 0.0 0
4 0.0 0.0
5 0.0 0.0
6 0.0 0.0
7 0,0 0.0
8 0.0 0.0
4 o2 2.9 STEADY-STATE TEMPERATURES FOR
) 52;’;3-{; 780w ggg-gJ BOUNDARY CONDITIONS FOR THIS TIME
13 6604 6604 F60.4 INTERVAL FROM 0 TO 10 SECONDS

STEADY—-STATE TEMPERATURES FOR THE BOUNDARY CONDITIONS AT THIS TIME DEG.R
2 3 -3

ROW 7/ COL 1 S 6 7 B
1 118241 18241 11R2«1 1183.1 1187.1 1182,V TT82.1 1182.1 1
2 11R2.1 11R2.1 118241 118241 118241 11821 118241 118241 1
3 " 0D 0.0 Lllﬂ?-l 118241 118241 1182,1 118241 118241 1
4 0.0 0.0 118241 118241 118241 118261 118241 11R2,1 1
s 0.0 Oen 0.0 0.0 118241 118241 11R2.1 11R2.1 1
6 0.0 0.0 0.0 0.0 . 11R2.1 118241 1182.1 5]
7 0.0 0.0 0.0 0.0 0.0 1182.1 118241 118241 [}
A 0.0 0.0 00 0.0 0.0 118261 1182.1 1182,.1 [}
Q N0 0.0 0.0 0.0 D20 1182,.1 11A241 1182,.1 0
10 040 050 0.0 0.0 118241 118241 118261 1182.1 1
11 118241 1182.1 11R2.1 1182.1 1182,1 118241 1182.1 1182,.1 1
12 1182.1 1182.1 11R2.1 11R2.41 116241 118241 118241 11R82,1 1
13 11241 1182.1 11821 1182.1 118241 1182, 118241 118241 1

RNW / COL 1T 12 T3
1 | IGE 11R2.1 IIRP_-IJ
2 1R2. 118241 118241
3 182. 0.0 0.0
a 1R2. 0.0 0.0
s . 0.0 0.0
6 0.0 0.0 0.0
7 0.0 0.0 0.0
a8 0.0 0.0 0.0
9 0.0 0.0 0.0

10 0.0 0.0 0.0

11 1182.1 1182,1 118241

12 118241 118241 118261

13 118241 1182.1 118241
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I8

INTEGSATED HEAT INPUT AT EACH NODE BTU
/

ROW coL 1 2 3 L) 5 [ 7 8 9 1o
1 2.9 1.0 2.9 2.9 9 le 2,9 2.9 10
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Ne0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0e0 00
a4 0.0 0.0 0.0 Oe 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0. 0.0 «0 0. 0.0 0.0 0.0
] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0e0
7 0.0 0.0 0.0 - 0.0 0.0 0.0 0.0 0«0 0«0
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 D0 0.0
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0a0 00
10 0.0 0.0 0.0 0.0 0.0 0.0 Os 0.0 0.0 0.0
11 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 00
13 0.0 0.0 0.0 0.0 0.0 0e0 0.0 0.0 00
ROW / CNL 11 12 13
1 2.9 1.0 249
2 0,0 0.0 0.0
3 0.0 0.0 0.0
a 0.0 0.0 0.0
L] 0.0 0.0 0s0
A 0.0 0.0 0.0 i
7 0.0 0.0 0.0
R 0.0 0.0 0.0
9 0.0 0.0 0.0
10 0,0 0.0 0.0
1t 0.0 0.0 00
12 0.0 0.0 0e0
13 0.0 0.0 0.0

/ NEXT TIME

ANGLE NF ATTACK= 20.00

*%%k%k T | M FE = 0,2000F 02 S E C DO NDS *kksx

XMACH= a,.,600 ALTITUNF= 52273,0 VELNCITY= 4453.24

AVFRAGE HFAT TRANSFFR CNEFFICIFNTS PRTU/SEC-FT*4%2-NFG.R
RNwW / COL 1 a

2 3 5 6 7 A 9 10
1 N.242F=01 0.,242F=-01 N.242F-01 0.242F-01 D.,242E-01 0.242FE-01 0s242F=01 0.242F=-01 Ce242FE=-01 Ne?a2F=01
? N0 0.0 0.0 Oe 0.0 O. 0.0 0.0 NDa0 (1 1)
3 0.0 0.0 0.0 6en 0.0 0.0 0.0 0.0 040 0.0
o NaO N0 0.0 0.0 0.0 0.0 Ne DD 00 0,0
s 0.0 0.0 0.0 n.0 0.0 0.0 0.0 0.0 0.0 0,0
[ NeN} 0.0 0.0 N0 0.0 Qa0 0.0 0.0 0e0 NaN
7 NN 0.0 N0 0.0 0.0 0.0 0.0 0.0 040 040
A NN 0.0 N0 N0 N0 0 D0 0.0 0.0 Qa.0n
] D0 N.0 NeO 0a0 0.0 0.0 0.0 0.0 0«0 D0
10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 nen
11 N.0 0,0 NDeD N0 NeD 0.0 n.0 0.0 0«0 N, 0
12 0.0 0.0 0.0 N0 Ne0 Ne0 n ngn
13 n.n n.0 Ne0 0.0 0.0 0.0 o n.n
RAW / CNL 11 12 13
1 Ny2u2F=01 0.242E-01 Ne242FE-01
? 0.0 0.0 Ne0
3 nen n.0 0.0
a n.n 0.0 N.0
s N0 0.0 Ne0
A 0.0 0.0 NeD
7 Neh 0.0 Ne0
A 0.0 0.0 n.n
Q 0,0 0.0 0.0
10 0.0
1B 0.0
17 0.0
13 0.0
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Section §

GENERAL GEOMETRY

5.1 DISCUSSION

This section describes the general geometry capabilities of CAVE and gives the

input data format.

When exercising the general geometry option of CAVE, the user must do the
usual tedious and laborious calculations associated with setting up a thermal network.
Namely, the volume of each node, the cross-sectional area divided by the X distance
between adjacent nodes, and the cross-sectional area divided by the Y distance
between adjacent nodes all must be supplied as input data to the code. The code will
then multiply the volumes by p Cp to obtain the node capacitances. The area over
distances will be multiplied by the thermal conductivity to obtain the conductances.
Multimaterial problems can easily be handled by supplying capacitances instead of
volumes and conductances instead of area over distances as input data. The material
properties P, Cp and k should be input as 1 in this case.

It is possible to simulate within CAVE a convection coupling, either constant
or time varying, to each node. The values of the couplings are supplied as input
data. Radiation heat transfer is not considered by CAVE when the general geometry

option is selected.

The matrix package within CAVE is very efficient from both an execution and
storage standpoint. This is made possible by some limitations that have been incor-
porated into the package. Referring to Figure 13, the limitations may be stated

as follows:

1. There exists a conductance coupling between node Iandnode I + 1, e.g.,
nodes 16 and 17. (The value of the coupling may be zero.) One exception
is when node I is in the bottom row. For example, nodes 12 and 13 are

not coupled.

83
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FIG. 13 GRID NETWORK FOR A GENERAL GEOMETRY PROBLEM



2. There exists a conductance coupling between node I ard node I + L where
L is the number of elements in the Y direct_ion, e.g., nodes 16 and 22.
(The value of the coupling may be zero.) One exception to this is when
node I is in the right column. Since there is no node I + L, there can

be no conductance coupling.

3. Node numbering is done sequentially starting with 1 and going to n, the
number of nodes. Numbers run columnwise starting at the top of the left

column with 1, the node below it 2 and the node to the right of it 1 + L.

4. No other conductance couplings exist. That is, node I will have at most
couplings with nodes I-1, I+1, I-L and I+L. It cannot be coupled to any

other nodes.

The last assumption precludes, for example, a nodal network having the couplings

shown in Figure 14.

On occasion, fictitious nodes are present within the network. They are forced
into the network by virtue of the above assumptions regarding the couplings. No input
data is required for these nodes since they are not ar active part of the problem.
Nodes 3, 4, 5, 19, 20, 21 and 27 (given in Fig. 13) are such fictitious nodes.

To visualize the class of problems that CAVE can most readily accommodate,
consider a rectangular grid network that gets cut up te form different shapes. If the
grid network is drawn on a rubber sheet and that sheet is stretched at will, any

resulting figure could be analyzed by CAVE.

The following subsections give the input data format and definition of input

variables for running a general problem.
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5.2 . INPUT DATA FORMAT FOR GENERAL GEOMETRY (Fig. 13)

Basic Geometry Card

e JGEO, L, M, NE* (415)
JGEO = -1 (selects general geometry option)
L = maximum number of elements in the
Y direction
M = maximum number of elements in the
X direction
NE = number of dominant eigenvalues to be used
in solution (e.g., a typical number is 3)
Title Card
e Run identification, comments, etc. (5A10)

e Blank Card

Material Properties Cards

. e MAT I5)
e NMATI1, RHO1, CONAV1, CPAV1 @10, 3F10.5)
e TMATI(l), TMAT1(@), ..., TMATL(NMATL) | _ .. (SE10.0)
e CONDTL(l), CONDT1@), ..., CONDT1(NMAT1) pif (8E10.0)
e CPTL(l), CPT1E), ..., CPT1(NMATI) NMATI=0 g110.0)

@ MAT = 2 include the cards:)

e NMATZ2, RHO2, CONAV2, CPAV2 (110.0,3F10.5)
o TMAT2(l), TMAT2@), ..., TMATZ(NMAT2) | .. (8E10.0)
e CONDT2(l), CONDT2(2), ..., CONDT2(NMATZ2) pif (8E10.0)
e CPT2(l), CPT2(2), ..., CPT2(NMAT2) NMAT=2  gg10.0)
MAT = number of materials (1, 2 or 3)
NMAT1 = number of entries in properties table (maximum of 10)

NMAT1 = 0 for constant properties

RHO1 = density of material 1, lbm/cu-ft _

CONAV1 = average thermal conductivity of material 1 (used when
NMAT1 = 0), Btu/ft-sec—R

CPAV1 = average specific heat of material 1 (used when

NMAT1 = 0), Btu/lbm-°R

*Current dimension limitations require that the product LXM not exceed 200.
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TMAT1(I) = temperatures in thermal properties table for which
CONDTIL(I) and CPT1(]) are given; 1 =1, 2, ..., NMATI, °R
CONDTI(I) = thermal conductivity of material 1 at temperéture
TMATL(), Btu/ft-sec-°R
CPTI1(I) = gpecific heat of material 1 at temperature TMATI(I),
Btu/lbm-°R
NMAT2, RHO2, CONAV2, etc., same as NMATI1,
RHO1, CONAV1, etc., except applied to material 2

Volume Cards

e KODE,I, v(), II, JJ (215,E10.0,215)
]
]
e ...
o 11100 (15)
KODE = 0 or blank
1 = node number
vQ) = node volume, cuft (or optionally pVCp) , Btu/°R
jul = limit for multiple parameter input
Jd = increment for multiple parameter input

(The node number is incremented by the spacing JJ until
the limit II is reached. Each node so specified is assigned

the same temperature.)

Material Selection Cards

¢ KODE, I, MATNUM(), O, JJ (215,E10.0,215)
°
°
o ...
o 11100 @as)
KODE = 0 or blank
1 = node number

MATNUM(I) 1 to use material 1 properties

It

2 to use material 2 properties
3 when node is at interface between materials 1 and 2

(interface is understood to be parallel to X-axis)
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II
Jd

Area Over X Cards

KODE, I, AOVERX(I), II, JJ

11100
KODE

I
AOVERX(T)

I
Jd

Area Over Y Cards

KODE, I, AOVERY(D), II, JJ

11100
KODE

I
AOVERX(I)

JJ

= limit for multiple parameter input

= increment for multiple paremeter input

@I15,E10. 0,2]5)

@s)
0 or blank
node number
cross-sectional area divided by X distance between -
node I and node I + L, required only for nonzero
conductances, ft2/ft (or optionally, the conductance
between nodes I and I + L), Btu/sec-°R
limit for multiple parameter input

increment for multiple parameter input

(215, E10.0,215)

1s)
0 or blank
node number
cross-sectional area divided by Y distance between
node I and node I + 1, required only for nonzero
conductances, ftz/ft (or optionally, the conductance
between nodes I and I + 1), Btu/sec-°R
limit for multiple parameter input
increment for multiple parameter input
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Convection Coupling Cards (215,E10.0,215)

e KODE, I, HA(Q), II, JJ
° ..
e ...
e ...
e 11100 (I5)
KODE = 0 or blank
I = node number
HA(@) = convective coupling between node I and TAW(),
Btu/sec—R
(or optionally, a negative number to indicate that
the coupling is time varying. The absolute value
of the negative number is then the number of the
dependent variable in the convection table that
gives HA(I) as a function of time)
II = limit for multiple parameter input
JJ = increment for multiple parameter input

Adiabatic Wall Temperature Cards

e KODE, I, TAW(), II, JJ @15,E10. 0, 215)
.
°
e ...
e 11100 (15)
KODE = 0 or blank
I = node number
TAW() = adiabatic wall temperature associated with node I, °R
(or optionally, a negative number to indicate that the
adiabatic wall temperature is time varying. The absolute
value of the negative number is then the number of the
dependent variable in the convection table that gives TAW
as a function of time)
I = limit for multiple parameter input
JJ = jncrement for multiple parameter input

/



Convection Table Cards

e KODE, L1, L2, TITLE (315, A65)
e TIME(Q), TIME@®), ..., TIME(L1) (7E10. 0)
e DIl(1), D1@2), ..., DI(L]) (7E10.0)
e D2(1), D2@2), ..., D2(L1) (7E10.0)
]
°
e ...
e DL2(1), DL2@), ..., DL2(L1) (7E10.0)
e 11100 as)

KODE = 0 or blank

L1 = number of values of time, the independent

variable (L1 < 250/L2)

L2 = number of dependent variables (1 < L2 < 20)

TIME (I) = time in convection table I =1, 2, ... L1, sec

D1() = first dependent variable to represent either

HA or TAW associated with a node or nodes

at TIME()
.
°
°
DL2(1) = last dependent variable to represent either HA or TAW

associated with a node or nodes at TIME(I)

Initial Temperature Cards

e KODE,I, T(@®), II, JJ (215,E10. 0,215)
®
)
° ...
° 11100 {1s5)
KODE = 0 or blank

node number

-t
It
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node initial température, ‘R

T(T) =
the node number is incremented by the spacing JJ
II and JJ =4 until the liinit IT is reached. Each node so specified

is assigned the same temperature

Time Interval Cards

e NTIMES (110)
e TIMES(), TIMES@2), ...... TIMES (NTIMES) (8E10.0)
NTIMES = number of points in time intervals

array (2 < NTIMES < 50)

initial time (usually equals 0.), sec

TIMES (I)
TIMES(I) time at which temperatures will be calculated

and printed out 1 =2, 3, ..., NTIMES, sec

5.3 SAMPLE PROBLEM FOR GENERAL GEOMETRY (Fig. 15)

The general capabilities of CAVE are illustrated via the simple grid network
shown in Figure 156. While CAVE can handle much more arbitarily shaped geometries

than this one, all the basic ingredients are present here.

As Figure 15 shows, two materials were used: a layer of beryllium across the
top that was being aerodynamically heated and the remainder aluminum with a portion
of its boundary being cooled. The convective coefficients and adiabatic wall temper-
atures associated with the aerodynamic heating are shown as functions of distance and
time in Figure 15, The values of hAX and T AW for the different times at nodes 1, 9,

17, 25 and 33 were provided as input data to represent the aerodynamic heating.

The following pages present listings of the input data used for this problem and
the resulting output data. The input data for this general type of geometry is seen
to be more extensive than for one of the built-in configurations. This is due to the
need to input for each node a volume, material number, condition area over distances,
convection coupling and adiabatic wall temperature, in addition to the usual material

properties initial temperatures and time step intervals,

The output from CAVE for a general geometry problem is very similar to that
of a built-in geometry. At the end of every time interval there is a printout of the
convection couplings, adiabatic wall temperatures, steady-state temperatures and
integrated heat inputs. No printout of convective coefficients appears since the
general geometry option deals strictly with the coupling, hA x and not with h alone.
(The input and output have been annotated to assist the reader.)
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N
<;<,
/ / / /
RUN NM. NA.l ('FNFRA! GEOMETRY PROBLEM AF AND AL(——— COMMENT CARD
. <—— BLANK CARD
7 114, 2 MATERIALS
. € . . 7 - . 0.
.Sigi .028;:3 .02§§§ ozzgg .3222 Iﬁ?m .ono PROPERTIES OF FIRST MATERIAL AS FUNCTION OF T
o 9 taase 3377 1713 <—"PROPERTIES OF ssconn MATERIAL
0 2 « 005 3a R
0 3 «005 as A
S 5 oS T A
e A Lo0s VOLUME BLOCK
0 13 «078
s 1s Lange 7t
mg 21 <008 37 n ) ASSIGN VOLUME OF .005 TO NODES 21, 29 AND 37
1 2a a0 1
8 2 1o 33 2 | MATERIAL NUMBER BLOCK
o 3 3. 35 A
11100
0 1 25 25 A
o 3 3% 3
o @ s .. | CONDUCTION AREA DIVIDED BY DISTANCE ~X DIRECTION
8 13 [P S ¢
11100
o 2 on i
s 2 1. 35 8 3 CONDUCTION AREA DIVIDED BY DISTANCE ~Y DIRECTION
0 5 1e 7 1
11100 ‘: 0;‘ ': ! e NODES 13, 14, 15,21, 29 AND 37 HAVE
‘g’ ‘ﬂ 002 33 A CONSTANT VALUE OF 002
e ) CONVECTION COUPLING BLOCK e NODE 16 HAS CONSTANT VALUE OF .001
o 24 ® NODES1,9,17,25AND 33 HAVE VALUES GIVEN
n|o§ : ‘ INTABLES 1, 2, 3,4 AND 5 RESPECTIVELY
o 21 a
§ ,47 ADIABATIC WALL TEMPERATURE BLOCK
0 25
o 33

NEGATIVE VALUE INDICATES THAT THE
COUPLING OR TEMPERATURE IS A FUNCTION OF
TIME AND THE VALUES ARE INPUT AS A TABLE.
THE TABLE NUMBER IS GIVEN BY ABSOLUTE
VALUE OF THIS NUMBER

SHEET 5.3 INPUT DATA FOR GENERAL GEOMETRY PROBLEM (REFER TO FIG. 15) (SHEET 1 OF 6)




1

TIME VALUES
TABLE 1 (CONVECTIVE COUPLING FOR NODE 1)
1100 TABLE 2 (CONVECTIVE COUPLING FOR NODE 8)
o 10 FORCING FUNCTION TARLE TABLE 3 (CONVECTIVE COUPLING FOR NODE 17)
8. .h00a  .000h  .noos / TABLE 4 (CONVECTIVE COUPLING FOR NODE 25)
0. +0003AS  ,000577 +000577 /

0. SO00aMS  .0008TT DDOSTT TABLE 5 (CONVECTIVE COUPLING FOR NODE 33)
9. .000277  .000a1s  .000&13 :éTABLE 6 (Taw FOR NOBE 1)
| ar0l iz00. 3000, 2000. 4« __TABLE 7 (Taw FOR NODE9)

1962, 1962

460, 1141, 1854, 1a52. «———— TABLE 8 {Tow FOR NODE 17)
_— a60.  1900.  1%00s  1%0. S TABLES (Taw FOR NODE 25)
: ”1000 t 460 a0 1}|N|T|ALT TABLE 10 (TAW FOR NODE33)
r o 50 100. 150. 200. 400. A00. } TIME STEP INTERVAL ARRAY

SHEET 5.3 INPUT DATA FOR GENERAL GEOMETRY PROBLEM (REFER TO FIG. 15) (SHEET 2 OF 6)
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HRRNRREEAERREEN N R AR R R
x

*
* CAVE CODE =

x L]
NO SIGNIFICANCE L M PSR MAX NODE  NO. OF EIGENVALUES
SURFACE ELEMENTS=-= /ROUS BY !CGLUNNS GIVES 40 EEELLENBTSR S/DDMINANT MODES« e s REQUIRES 1194 WORDS OF MEMORY

ECONONNMIZE++ +REDUCE NIMENSION OF S AND VALUE OF MWNRNS FRNM lzw TOWARDS 1372~ VALUE REQUIRED FOR THIS PROBLEM
VALUE REQUESTED IN CAVE

REAREE XA AR AR AR AR R AN AR RN KRR AR AR R R R AR R RE RN AR AR AR RS AR RRE R AR RA A AR R AR I ER RS RZAR AN R R R SRS R AN RE R R R IR ARk &

RUN NO. N&el GENERAL GEOMETRY PROALEM BE AND AL < COMMENT CARD

t‘!’l.l“lt“i#l.‘.‘t.'."‘i'-t‘i‘“ﬁttt‘tt.‘tt't“i.;ttti‘tt"-#i.“i‘!ttii".‘ttl‘"‘#.-t'#‘i"tt‘i‘t#llit“"-i-.t#i‘

G ENERAL GEOMETRY PR OBL EWM

TARLE FOR HA AND TAW 10‘
1 4 10 FORCING FUNCTINN TABLE -‘0\) A
040 0.100000€ 03 0.200000E 03 0.100000€ 04 “\“ (N
0.9 0.400000E-03 0.600000E-03 0.500000E-03 4 “1“
0.0 0.385000E-03 0.577000E~03 0.577000E-03 \“?
0.0 0.341000E-03 0.512000£-03 04512000E~03
0.0 0.277000€~03 0.415000E~03 0.415000E-03
0.0 0+200000E-03 0.300000€-03 0.300000E-03
0.260000F 03 0.120000E 0a 00000F 0a 0.200000E 04
0.660000F 03 0.118500€ 0a 96200E 04 0.196200€ 04
0.4/0000F 03 0.114100€ 04 .185400€ 04 0.185400E 04
0.460000€ 03 0.107700€ 04 0.169100E 04 0.169100E 04
0.460000E 03 0.100000€ Na 0.150000E 0a 0.150000E 04

EAREAEERR NSRRI RA AR AR E RN R RN AR ER SRR R BT IR E TR I N BR R R RN R AR N AR AR ARR R R R BB E KRN N AR R A SRR SRS R KSR R k&

M AT ERTAL PROPERTYTIES

MATERIAL 1 RHO=114,00 LBM/CU~FT K=003220 BTU/SEC-FT-DEG.R CP=0.3600 BTU/LAM~-DEG.R T= 450400 DEGeR
K BTU/SEC-FT-DEGeR BTU/LAM-DEG.R T= 500,00 DEGeR
BTU/SEC-FT~DEG.R ATU/LAM-DEG.R T= 625,00 DEG.R
BTU/SEC-FT-DEGeR MYU/LBM=-DEG.R T= 750,00 DEGe.R
BTU/SEC-FT~DEGR ATU/LRAM-DEG.R T= 875,00 DEGeR
BTU/SEC-FT-DEGeR BTU/LAM-DEG.R T=1250,00 DEG«R
BTU/SEC-FT-DEGsR RTU/LAM-DEGaR T=2500400 DEG.R
MATERIAL 2 RHO=172.80 LBM/CU-FT K=002220 BTU/SEC~FT-DEG.R CP=062150 BTU/LAM=-DEG.R

FREBBAKANESAERERRRRX RS ER AR B RE N R AR RS R AR AREEEER AR P E A S RSN AR RS IR R R BB R AR RA R R B E A B S B N R RS SR BA B R RN SRR SRR R AR a RS bR Ok

FERRENBERERBBRBERAR RSN LSRR SRR AR RN BRI R BN XS AR AR R RSB BS R RR AR X R RN R B ES AR BB SRR R PR AR R A XS AR BR R AR TR R SRR XN ARR RN RN RN ¥

SHEET 5.3 OUTPUT DATA FOR GENERAL GEOMETRY PROBLEM (REFER TO FIG. 15) (SHEET 3 OF 6)
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L6

NODAL NETHWORK

NODE NUMBERS
Raw / caQuL 2 3 A [
1 1.0 el 170 2500 33U
2 2e0 100 1840 2640 3440
3 3.0 11.0 190 270 3540
3 200 1240 2040 28:0 3640
s 5.0 1350 51:0 300 3720
6 Sa0 14.0 Oe Vel CeU
T T o0 1Se0 00 0.0 Oe0
a8 oD 16. 0 Qo0 0e0 D0
MA;ES!AL NUMBER AT EACH NngE - a
ROW oL 5]
i =T =T T3 BRY I<T e———MATERIAL 1
.
3 g:g ;'.g 3'.g 3.9 g:g ‘<._|NTERF1ACLE2NDDE
& 2 fo———
5 230 240 550 220 5.0 MATERIA
é 240 200 25 850 525
7 200 2.0 0.0 [+ Y] 0.0
8 2.0 2«0 0.0 0.0 0.0
nCA?Ag[JANCE AT‘EACH NODE » = a 5
ROW a
T T T L n e AT 6 SHARE OF |
: 21 [+] 2 00.210E
3 0:198E 00 0:!935 00 O:IQRF 00 D:]QBE o0 OZlQRE 00 SlMILABTO SHAPE
& 04372E 00 00372E 00  04372F 00 0a372F 00 0,372E GEOMETRY
5 0.372E 00 0.279E Q1 N JBEE_00 No JB6E 00 05 186E
5 0.37°PE 00 O+ 186€ 00 I Vel Y] Oe0
7 0e372F 00 0»1R6F 00 0a0 0.0 Ded
A 0o 1AKE 0O 0« QPQF -0 0t 0.0 000
RnCn?DgCTANCE IN)X-anECTION0 - a
W ou B 5
! Siieseg:  uiegeer  gngliooe ooraboge  rpm—— ZERQ VALUES SINCE THERE
Do e saEme suiEma s o RO Tzsg | THE
- 3 - 222F = ~01 000
s 0.222E-01 0.111F-01 : = . = 20 RIGHT OF THESE
A 0.222E-01 0.0 [+ FY¢] Dol Vo0
7 0e222E~01 0.0 0«0 0.0 0.0
i} 0:111E~-01 0.0 0.0 00 0.0
CONDUC TANCE IN Y=-DIRECTION
ROY / CaL )| 2. 3 a4 8
1 Va0I7E=0] Ooh37/E~0O1L Vob37E~01 Deb3I7E~01 Cob37E-01)
2 0« 837E~01 00 H3TE-D1 0o637E=~01 0o 637E~01 00637E-01
3 042226-01 042226-01 0.222E-01 0.222E~01  0.2226-01
i 002236-01 0.5326-01 0e2236-01 0.2226~01  0.3226-01
P | e o
- - 0e0 [ De0
7 0.2226-01 0.111E-01 | 050 0.0 020 ZERQ VALUES SINGE THERE
8 o 20 < T Ul 0.0 ARE NO NODES BELOW THESE

SHEET 5.3 OUTPUT DATA FOR GENERAL GEOMETRY PROBLEM (REFER TO FIG, 15) {SHEET 4 OF §6)




INITIAL TEMPERATURE DISTRIBUYION DEGeR
/7 CoL 1 2 3

ROW CY 1
1 AH0.0 4600 ah0e0 4600 460
2 A460.0 460.0 AR0,0 46040 46040 B
3 46060 A60.0 4A0.0 46040 A60.0 .
6 AADLO A6D. O ABDeO -0 ANB0.0
& A60e0 26040 AL 2.0 LY. T/
6 4A0.0 46040 o0 0
K4 440.0 46040 Qa0 «0
L] A60.0 A60.,0 O Oe0 0e0
L RSN ERAGADED . SSBRASSS AU EASABEINECHIIPIEIUSSIPSASIRIBENREAAINR S &

I8 T [ M F m 0.%000F 02 S £ C O ND S ss6e0

“ncvslegf HEAY TRANSFER CNUPLINGS ATU/SEC-NEGR %
1 AVERAGE OF HA AT TIMES 0. AND 50.
3
L ~y
5 Lt
6
7
a

nansRégF ADIARAIIC WALL TEMPERATURE ﬂEgoR «‘
A LN 2. & :
y RATTE 2iTey Fiavy ATt AVERAGE OF Ty AT TIMES 0. AND 50.
2 0.0 O O 0e0
3 0e0 O [ 29 Ne0
4 0«0 00 OO D0
5 0.0 500.0
] 0.0 S00.0 . .
7 0.0 $500.0 00 O
a 0.0 0e0

ra 2 5
1 462 «0 a62e] BhZe s L -Crd vy
4618 461.9 an2.1 462, 3 pe——TEMPERATURE AT THIS TIME N
3 4617 a61.A ah2,2 4825 -
a 46107 26109 4629 46347 :
AR2. 2. aeB i
6 46306 46541 <0 o0 n ’
7 463 e5 46645 0.0 040 ;
a 4K ¢ R a Oe0

0.0 ?

SHEET 5.3 OUTPUT DATA FOR GENERAL GEOMETRY PROBLEM (REFER TO FIG. 15) {SHEET & OF 6)



66

STEADY=STYATE YEMPERATURES FOR THE BOUNDARY CONDITIONS AY THIS TIME DEG.R
0 A

Row 7/ CoL

DNRANOWN -

ROW

BARNOLIN

INTEGRATED HEAT INPUT AT EACH NODE ATU
/ cot

0¢91SE 00 OeAA2E .
O 0.0

040 0.0

0.0 0.0

0.0 0.378E 01

0.0 0e347E 01

N9 04335 01

0.0 04 166E 01

s%ssk T | M F = 0,1000F 03 S EC O ND S nesws a————NEXT TIME

AVERAGE HEAYT TRANSFER COUPRL INGS RTU/SEC—"FG;R

ROW /7 COL
1 De300F~03  0aZAIE=HT
2 0.0 0.0
a 0.0 0.0
a 0.0 0.0
s 0.0 04200£-02
s 0.0 0.200£-02 [55 .
7 0.0 0.200¢-02 | a.0 0.0 0.0
" 0290 0:19006-02 | oLo 0.0 0.0
AVERAGE ANTABATIC WALL TEMPERATURE NEG.R
RoW 7 oL 3
2
3
&
5
3
7
SHEET 5.3 OUTPUT DATA FOR GENERAL GEOMETRY PROBLEM (REFER TO FIG. 15)(SHEET 6 OF 6)
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APPENDIX A

DESCRIPTION OF THE HYBRID ANALYTICAL-NUMERICAL TECHNIQUE.

This appendix presents a brief summary of the Hybrid Analytical-Numerical
(HAN) technique using, as an example, a one-dimensional, finite thickness, conduction
problem. This application provides two services. First it provides a clear exposition
of the HAN technique with its attendant matrix operations; and second, it provides
insight into the accuracy of the technique since an exact solution to the problem is
known. The effect of retaining only the dominant eigenvalues and eigenvectors (E & E)
on the accuracy of the solution can be clearly assessed. In NASA CR-2435, Maise
and Rossi thoroughly investigated the effect that the number of E & E's have on the
accuracy of the h predicted for the inverse problem. In addition, for a direct prob-
lem at a particular time, they show the typical e:.ors incurred by neglecting
subdominant eigenvalues in a very simple model problem. This appendix
explores how the incurred errors vary as a function of time. The solution to the
sample problem was obtained using a specially prepared computer code to perform
all of the matrix operations and companion calculations. The solution provided a
completely independent check on the eigenvalues, eigenvectors and temperatures
generated by CAVE.

The problem considered was that of a slab heated by convection on one face and
perfectly insulated on the other face. Figure A-1 shows the 10-node network selected
to solve the problem; also shown are the properties, temperatures and dimensions

used.

In the HAN method, spatial derivatives are replaced by their appropriate finite
difference representations and the temporal derivatives are retained as ordinary
derivatives. In effect, the problem is subdivided into a number of uniform tempera-
ture systems or nodes that are coupleri and changing in temperature. Utilizing the
notation of Appendix F, the set of ten, first-order, linear, ordinary differential
equations for the temperatures at the ten nodes can be written as:

MT=BT+F Eq. (A-1a)
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FIG. A-1 NODAL NETWORK FOR ONE-DIMENSIONAL CONDUCTION PROBLEM
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subject to the initial condition,

(100’

LO) =Ty =

L 100 J

Eq. (A-lb)

The matrix is a 10 x 10 diagonal matrix associated with the heat capacity

of the nodes and is given by:

-

1.65 0.0 0.0 0.0 0.0
0.0 3.30 0.0 0.0 0.0
0.0 0.0 3.30 0.9 .0
0.0 0.0 0.0 3.30 0.0

M=]|0.0 0.0 0.0 0.0 3.3
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 N.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
| 0.0 0.0 0.0 0.9 0.0

where,

= - AxX

Mii =My 1072 PC

M.. =AxpPCfori=2,3, ...9

ii

COO0OO0OWOOOOO

COQOQoWOOIIOO

COOWOOOCCLOO
e © o 5 s s o e o o

QOO WOOOD0O0O0

COWODOOODOO0O
o 8 e ® s o s ¢ 0o @

QOWOOOOLOLOUO

* o s & s s o e @
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The matrix B, also 10 x 10 in size, is associated with the heat transfer

couplings between nodes and is given by:

[ ~2000. 1000. 0. 0.
1000. -2000. 1000. 0.

0. 1000. -2000. 1000.

0. 0. 1000. -2000.

_ 0. 0. 0. 1000.
B= 0. 0. 0. 0.
n. 0. n. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

O.

0.

0.
1000.
-2000.
1000.
0.

0.

0.

0.

1000.
-2000.
1000.
O.

0.

0.

0.
1000.

-2010.

1000.
0.
0.

0. 0. 9.

. 9. 0.

0. 0. O

0. a. 0.

0. 0. 0.

. 0. n.
1000. 0. 0.
-2000. 1090. 0.
1000. -2000. 1000,
0. 1000. —zooozj
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where,

k
by, =-h-%k
i=2, 3, 9
- o kK.
i 2 3%
- =k
P10 10 T ax
and,
= :L i =
bMJrl = bi+1’i Ax i=1,2,...9

The ten-component column vector F, represents the forcing function in the

problem. It is given by:

(" 200 000 )
0
0
0
0
F= ﬂ 0 >
0
0
0
. 0 s
where, f1 =h TAW

The ten-component volume vector T represents the temperature at the ten

nodes at any instant of time. The vector T is the time derivative of T.

From Appendix F, the arclytic solution to the initial value problem (A-1) is

given by:

- 1/2
T=T_ +M 172 ¢ exp (At) VT M / (T

= Zinit ~ Iw

) Eq. (A-2)
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where,

T, - the steady-state solution to (A-1)

a diagonal matrix formed with the eigenvalues A ; of matrix A

v = a matrix of eigenvectors of matrix A

>
I

defined by A = M

1/2 -1/2

BM

Specifically, these quantities are given by:

A=

s}

[=NeoNeoNoRoNoNoNoNe N
e o o o ¢ o & o o o

OCO0OO0OO0O0OQOOOO N

-0.049
-0.138
-0.203
-0.263
-0.316
-0, 362
~0,.399
—0-426
~0.442
-0.317

™ 200

200

s

]
o]
rs

COOO0ODO0OO0OO~NO
* 5 o 6 o o a & & »

OCO0OO0OO0O0OO0O0O0OWO

-0.133
-0.357
-0.445
-0.435
_00328
-0.148
0.065
0.263
0.403
0.321

|
Y
w

’

~

[oNeoNoNeoNoNoNaoR NoNe]
¢ o o o o s o 4 e o

QOO0 O0OO0OONOCO

0.190
0.455
0.363
0.049
-0.295
-0.459
-0.342
-0.017
0.319
0.325

[
w
wm
ODO0OO0OO0O0O0ONOOO

OCOO0CO0OO0OO0OLMOOO
N
|
%]
)]
OO0OO0OO0O0OWOOOO0

OCOO0OO0OO0OWOOOO
o]

0.221 -0.235
Oe444 —0.361
0.058 0.269
-0.396 0.408
~0.388 -0.198
0.2971 ~0.442
0.448 0.121
0.303 0.463
-0.194 -0.041
-0.329 -0.333

0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.7
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
-764.06 0.0 0.0 0.0
0.0 -959.34 0.0 0.0
0.0 0.0-1113.2 0.0
0.0 0.0 0.0-1200.5
0.0 0.0 0.0 0.0

-0.233 -0.214 -0.166 0.067
-0.244 -0.126 -0.038 0.002
0.457 0.451 0.299 -0.099
0.006 -0.399 -0.462 0.192
-0.460 0.014 O0.475 -0.278
0.234 0.382 -0.332 0.353
0.338 ~0.460 0.081 -0.415
-0.410 0.154 0.196 0.461
-0.124 0.280 -0.409 -0.489
0.336 -0.340 0.346 0.352

where the columns of V are eigenvectors of matrix A.

|
—
o~
o~

WOOOOOO0O0QOQOO
e o o & o o s s s »

If\.)OOOOOOOOO

~-0.841
0.493
-0.204
0.085
-0.035
0.015
-0.006
0.003
-0.901
0.001
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For computational purposes the solution (A-2) is best written as:

T=T,+CE® Eq. (A-3)

—0o0
where the matrix C is given by

-1/2 v

C=M D

Here D is a diagonal matrix constructed from the components of the column

vector R, defined by:

T ,,1/2

R=V' M T, )

(L init ~ Lo

That is, the diagonal elements of D are given by:

The time dependent column vector Pis given by:

" exp (-7.48t) )
exp (~67.34t)
exp (-185.3t)
exp (-352.9t)
_ exp (-5653.4t
PMO=  {exp §-764. lt; ’
exp (-959.3t)
exp (-1113.t)
exp (-1201.t) J

exp (-1463.t)

That is, the ith component of Pis given by:

P, =exp (Ast)

106



The matrix C for the particular problem being considered is given by:

[ _19.47 —16.04 ~11.80 —8.42 —6.03 —4.32 —2.90 —~1.50 —0.23 —-29.29 |
—38.70 —30.29 —20.00 —11.93 —6.56 —3.19 -1.21 -0.25 —-0.00 12.13
—56~98 _37-82 _15-96 —1055 4089 5-98 4.32 1091 0.24 —5003
—73.85 —36.94 -2.17 10.63 T.41 0.07 —-3.82 —2.96 ~0.46 2.08
c=| -88.89 -27.85 12.95 10.44 —-3.60 -6.02 0.14 3.03 0.67 -0.86
~101.74 —=12.58 20.15 -1.91 —8.03 3.07 3.66 —2.12 -0.85 0436
~112.08 5.50 15.03 =12.04 2.21 4442 —4.41 0.52 1.00 -0.15
""119.66 22-34‘ 0073 _8015 8042 _5-37 1.48 1-25 _1011 0006
~124.28 34.23 —14,03 5.23 —0.74 -1.62 2.68 -2.62 1.17 -0.03
| -125.83 38.51 -20.20 12.52 -8.55 6.21 —4.61 3.13 =1.20  0.02

Returning to Eq. (A-3) it can be seen that the temperature at the ith node is
given by:

N
Ti = Twi + Z Cij exp ()‘jt) Eq. (A-4)
=1

where N equals the number of nodes (10 in this particular case).

For example, the temperature at node 1 is given by:

=200 - 19.47 exp (-7.48t) - 16.04 exp (-67.34t) - 11.80 exp (-185.35t) - ...
Eq. (A-5)

T

while the temperature at node 10 is:

=200 - 125.8 exp (-7.48t) + 38.51 exp (-67.34t) - 20.20 exp (-185.35t) + . ..
Eq. (A-6)

T1o

An examination of the arguments of the exponential functions shows that the

leading terms in the finite series dominate the sum.

Two questions naturally arise: (1) how does the HAN solution given in Eq. (A-4)
compare, both in form and accuracy, with the exact analytical solution; and (2) what
loss in accuracy is incurred by retaining only the dominant E & E's in the solution
(i.e., the first few terms in Equation (A-4). These questions are examined in the

following discussions.

\
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The analytical solution to the problem being considered is given by the
solution to the partial differential equation:

o _ 19T
a g

axz

subject to the boundary conditions,

aT _
2L o,t=n [TAW-T ©, t)]

and

q.-lm
LA ]

(L,t) =0

with initial condition,

T (x,0) = Ty ;s
The solution to this bounda.rj value problem can be obtained by separation of
variables in conjunction with Fourier series expansions or simply by looking up the

solution to a similar problem in Carslaw and Jaeger's, '""Conduction of Heat in
Solids' on page 122, In either case, the solution is given by:

2H sec (1)
2
]

[ -]
= X 2 2
T @) =Ty + Tonse ~ Taw) -21 —— cos [u;(1-])]) exp (-4ja t/L%)
]=

Eq. (A-T)
where the “j satisfy the equation -

#]. tan "j = H (see Table 1 of Carslaw and Jaeger, P. 491)

-hL
and H= K
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Eq. (A-T) shows that for a given value of x the solution is the form
0
T, () = z ; exp (1) Eq. (A-8)

where the i subscript is used to connote that the temperature is for a particular value
of x and where

2H sec(u,)

X,
- } I 4 ¥
25 = Cinit ~ Taw) B [“j ( L)]
j

and

2 a
b, = ~u] —5—
j Jog2

Eq. (A-8) is identical in form with Eq. (A-4) except that in Eq. (A-8) the series

is an infinite one rather than a finite one. (Note that T, in Eq. (A-4)represents the

steady-state solution at node i, which is in fact Ty o)

It is mstructwe to compare the C.. i 's with the aJ 's and the )\]'s with the b 's.
These comparisons are shown in the following tables for the two extreme locat1ons
for x, i.e., x = 0 and x = L corresponding respectively to i =1 and i = 10,

i=1 x=0 i=10 x=L
i Cij 2 | C10j 210j
1 -19.47 -19.56 -125.83 ~125.98
2 -16.04 -16.63 38.51 38.80
3 -11.80 -12.72 ~20.20 -20.40
4 -8.42 -9.33 12,52 1246
5 -6.03 -6.84 -8.55 -8.28
6 -4.32 ~5.10 6.21 5.83
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The )‘j's and bj's are-independent of x. They are as follows:

i 7\i by

1 -7.48 -7.49
2 -67.34 -68.19
3 -185.27 -192.90
4 -352.85 -385.43
5 -553.36 -648.50
6 -764.06 -086.60

approaches mfmity the

expected since it is known that as the number of nodal points N
's will approach the aij 's and the xj's will approach the bj's, and, therefore, in
the limit, the HAN solution approaches the exact solution. But the really pertinent

question here is: how accurate is the 10-point HAN solution ? Figures A-2 and A-3
address this question. They show comparisons of the HAN solution with the exact
solution at the front and rear faces of the slab. If all ten terms (i.e., eigenvalues

and eigenvectors) of the HAN solution are used, the temperatures calculated are
virtually identical to those of the exact solution. As a matter of fact for times in
excess of 0.05 hr, the first exponential term in the HAN solution compares with the
exact solution to within(,06°K. It is very interesting to observe that the shorter the
time period of interest the greater the number of terms required to achieve a given
accuracy. An alternative point of view to this observation is perhaps ‘more significant.
Namely, for a given number of terms or eigenvalues there is a minimum time period
to achieve a certain accuracy. It may be noted that (Ax)z/ a can be considered a
characteristic time for the transient response of nodal elements. For this example,
(Ax)z/ a = 0.003 hr, and it can be seen that the time required for accuracy with only
a few dominant eigenvalues is of the order of three times this value. A further note is
that the typical explicit finite algorithm has a maximum time step (for the problem
being studied it is 0.00165 hr). This maximum time step arises from stability require-
ments, and is not related to the accuracy considerations for the HAN method.

Two things need emphasizing at this juncture. First, with the HAN method con-
.siderable computer machine time can be saved by calculating only those E & E's that
are "significant". This was noted very aptly by Maise and Rossi in NASA CR-2435 and
used by them in the CAPE code for the indirect heat transfer problem. As regards the
direct heat transfer problem being solved here, Figures A-2 and A-3 show that for a
time period of interest greater than 0.01 hr, it would be a waste of machine time to
compute the fourth through tenth E & E's since they would have an insignificant effect
on the computed temperature.
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The second item that needs emphas;izing is that because the boundary conditions
on the problem studied herein were constant with respect to time, it was necessary to
obtain the E & E's only once. Time varying boundary conditions will require periodic
revision of the E & E's to réﬂect the changes in matrix A. In essence, problems |

involving time varying boundary conditions are solved by dividing the time intervil

-into M subintervals within which the boundary conditions will be constant. Thus. i:hefe

will be M subproblems with the initial conditions of one problem being the fina_l""
conditions of the previous problem. Obviously, frequent revisions imply a s;mall
time period and hence more E & E's to achieve a given accuracy. Some reflection on
all of this reveals that the optimal solution (viz., minimum machine time for a given
accuracy level or maximum accuracy level for a given machine time) will be achieved
by proper selection of the number of E & E revisions (or time steps) and the number
of E & E's to be calculated. The following table illustrates this point. In Table A-1,
M represents the optimal number of E & E's revisions and NE represents the optimal
number of E & E's.

Table A-1. Mix of Constant Machine Time Solutions

Time Period T No. of

Between E & E E&E No. of

Revision Revisions | E &E’s ) Remarks

Long <M >NE With long time period, do not need this
many E & E’s. Furthermore, the piecewise
constant representation of boundary

B - | condition is poor
Optimal M NE Number of E & E’s calculated consonant

with the time period. Good piecewise
constant representation of time varying
boundary conditions

Short >M <NE Number of E & E’s insufficient to provide
good accuracy for this short time period.
Piecewise constant representation of
boundary condition is excellent
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The "optimal'’ values for M and NE depend somewhat on the particular flight
trajectory, geometry, dimensions and materials being analyzed. For the missile
and Hypersonic Research Aircraft problems that were analyzed during the develop-
ment of the CAVE code, NE should be approximately 3 to 5, and M should be
approximately twice the number of flight trajectory points input to the code.

In summary, this appendix has presented the details of the HAN technique
applied to a one-dimensional conduction problem. The HAN solution gave a near
perfect comparison with the exact analytical solution of the same problem. It was
seen that the HAN solution has a minimum time interval for a given accuracy level
and number of E & E's. Furthermore, we saw that there is an optimal number of

time subdivisions and E & E's for a specified accuracy level or machine time.



APPENDIX B

AERODYNAMIC HEATING EQUATIONS*

Incorporated within the CAVE code are equations to predict the aerodynamic
heat transfer that will occur at the surfaces of the leading edge and flat plate geome-

tries. This appendix presents the equations that are used in subroutines OVLY20,
LEES1 and FLATH. The equations are valid up to a Mach number of six or so, where
real gas effects become important. Ambient pressure and temperature as functions

of altitude are calculated in subroutine ATMOS based on the 1962 U.S. Standard Atmos-

phere. The range of altitude is from sea level to 47 350 m.

Moo
S

Leading Edge Geometry

Aerodynamic heating of the leading-edge geometry is handled in two steps:
(1) the convective heat transfer coefficient at the stagnation point is computed in sub-
routine OVLY20 and; (2) the ratios of the local convective values to the stagnation

point value are calculated in subroutine LEES1 for all the surface nodes.

The user can flag CAVE to use either a turbulent or laminar flow correlation

for the stagnation point coefficient.

For turbulent flow, CAVE uses Beckwith and Gallagher's equation (B-1):

4/5 1/5
k T P 2R :
0 4/5 1/3 AW "o e) . 3/5 |49 Ho N dv
=——— Re Pr’"10.0228 —— - —— (sin A __..) a5z ©— COSA —_— =T
ZRN °'f _ < o TW By, eff 376 Mo eff \vV,, ds o

Eq. (B-1)

*The reference list is included at the end of this appendix; Table B-1 gives the

nomenclature.

115



where according to reference (B-2):

79 RN 1/2
(ﬂ d_V) =L 2 (1 ..-pi) Eq. (B-2) .
Ve ds o a'ooMeff Y P, :
)

(o)

The effective sweep angle A off is given in Reference B-3.

Aeff = sin-1 [sin Acos a+ sinacosAsiny] Eq. (B-3)

with o being the angle of attack, ¥ the dihedral angle and A the actual sweep angle.

For laminar flow with a freestream Mach number less than two, CAVE uses the

modified Lees equation for the stagnation point:

' * 1/2
"h_=0.5 “p o x fLe V' Eq. (B-4)
= N —— q. -

o pr2/3 |e <3600 gc> °

where the * quantities are evaluated at
T* = \

. T 0.5 (TW + TO)

The velocity gradient term V(') is computed using:
1/2

\s
2% R; l::‘” (1 - :°° >:| Eq. (B-5)
o (o]

For freestream Mach numbers greater than ftwo, CAVE uses Detra, Kemp and

Ridell's equation (Reference B-4) modified for effective sweep in accordance with
References B-5 and B-6, to give the laminar heat transfer coefficient at the

gtagnation point:

Eq. (B-6)

3.15
oo 221 (pg) 1/ <V°° ) L5 ,
COS eff

o~ (T, -540) \Ry 1000
o
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where A off is the effective sweep angle given by Eq. (B-3).

With the stagnation point coefficient h0 thus established, the distribution of
convective coefficients around the leading edge is computed using Lees® formula
(Reference B-T7), with assumptions of cold wall and &~T:

h=hOFV1/2/

o0

(dv,/ds)

where

S -1/2
P Ve[ P Ve :l
F=s= Z— ]2 — —dS
i
ty, o fo %

Maise and Rossi (Reference B-8) used this formula in subroutine LEES to obtain

the distribution of h around the leading edge. The stagnation point value h o Was an

unknown in their problem and was found by the CAPE code given the temperature

history of the body. Basically, this same subroutine (LEES1) has been incorporated

in the CAVE code.

To evaluate F quantitatively, the local flow conditions around the leading edge

are required. These conditions are found using the modified Newtonian law in the

subsonic region surrounding the stagnation point and using Prandtl-Meyer expansions

downstream of the sonic point locations. Specifically, in the subsonic region the

local conditions will be predicted by the following equations:

v
2 .2 : 7-1
2Y M sin g-(r-1

2
L v+l (r-1 Misinzﬂ + 2

po=pt

where § = 90° - A .
The local pressure distribution is predicted according to Reference B-1:

= 2
Pe—Pm+(po-pw)cos 0

where 0 is the angle measured from the stagnation point.
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Y | v
¥-1 ¥-1
) 2 .
(v+1) M2 sin’® a1

=p 1
L £ (v-1) M2°-° sin2¢+2 2 'YMi sin2¢ - (v-1)

cl e AT

r-1
/@ 2G md)

o
t

2
l

T

|
i

e teo
Ve = Me a,
P = Pg/RT,

In the supersonic region downstream of the sonic points the local Mach number,
Mg, is obtained via the Prandtl-Meyer turning angle v found from the following

equations:

where

v () = V(r+1/7-1) tan™t Vi(y-1/7+1) 01 21y -tan”lyM3-1
e e

and

[02 - ,0'1] represents the change in flow angle.
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With the local Mach number determined, ;the other pertinent flow properties are

established using the following equations:

' -v/7-1

- -1 _2

Pe =P (1+=5" M)
()
- v-1
v, -1 /e
(o}

a.e = ,/-ygcRTe
Ve =Mea‘e
pe =pe/RTe

Flat Plate Geometry
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For flat plate geometries Eckert's reference enthalpy method (Reference B-8)
is employed to predict the heat transfer rate, i.e.,

0.332p* Ve Cp

h= (laminar flow) ‘Eq. (B-T7)
REY/2 py2/3
and
) 0.0296 p * Ve Cp
* urbulent flow) Eq. (B-8
Rel/2p,.2/3 ¢ q. (B-8)

The Reynolds number is based on the boundary layer length .2 .

The subroutine FLATH calculates the local flow values to be used in the above
equations based on oblique shock wave theory. That is, the shock angle 8 is found from

solving the following cubic equation:

Zs+bzz+cZ+d=0
where,
Z=sin29
M +2
b= ~—5—— - ¥sin"a
M2
o
_ 2M1+1 (1% y-1 | 2
c=——p— + 7 > sin"a
Ma° Mw
0052
d= - 4"
M



With the appropriate 8 selected for a weak shock, the other flow properties are
calculated via the following equations: S

[27 M2, sin’e - (7-1)]
Pe =P, 1

[27 M2 sin®e - (v-1)] [(v-D) M2 sin®6 + 2]

& +1)2 Mi sinze

Ty = T

1/2

4(szsin29 -1)(‘YM%° si1129+1)
S T ]

(v+1)% Mm%, sin%0

P = P /RTe

The subroutine TRANS establishes the laminar and turbulent regions using the
boundary layer transition criterion shown in Figure B-1 (Reference B-9). It is recog-
nized that this criterion is not the final word on simple boundary layer transition
criteria but rather representative of the best presently available. In light of this,
the code is written so that as newer criteria are evolved they may be readily incor-
porated into subroutine TRANS. For that matter, the entire aerodynamic heating
portion of the code is written so that as the need arises to use more specialized

equations, they may be easily substituted for those presented herein.
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TABLE B-1. NOMENCLATURE AND UNITS

Symbol Units
a Speed of sound ft/sec

Qp Specific heat at constant pressure Btu/lbm-°R

d Hydraulic diameter ft

9c Newton constant 32.17 ft-lbm/lbf-sec2
h Convective heat transfer coefficient Btu/ft2-sec-°R

k Thermal conductivity Btu-ft/ftZ-sec-°R
'} Effective boundary layer length ft

M Mach number dimensionless

p Pressure Ibf/§t2

Pr Prandt! number dimensionless

q Heat flux Btu/ft2-sec

r Recovery factor dimensionless

R Gas constant Ibf-ft/Ibm-°R

Re Reynolds number dimensionless
Rn Nose radius ft

S Distance along surface ft

T Temperature °R

Y Velocity ft/sec

a Angle of attack degrees

Y Ratio of specific heats dimensioniess

0 Angular position from stagnation point or oblique shock angle degrees

A Wing sweep angle degrees

p Mass density “lbm/cu-ft

u Viscosity lbm/ft-hr
Subscripts

AW Adiabatic wall

e Property at edge of boundary layer

eff Effective

{Continued)
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TABLE B-1. NOMENCLATURE AND UNITS (Cont’d)

Symbol ' Units
Subscripts (Cont'd)

o Stagnation point

r Recovery

t Total condition {i.e., condition that would exist if fluid brought to rest isentropically)

w Wall

oo

Free stream

Superscripts

* indicates fluid property evaluated at temperature T given by

. _
T =T+ 0.5(Tyy — Te) +0.22(T, —Tg)
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APPENDIX C

LINEARIZATION OF RADIATION COUPLING

Leading edges, cooled panels and slab geometries may involve radiation heat
transfer at the surface. Typically the direction of heat transfer is away from the
body, serving to cool it. An exact treatment of radiation within each time step pre-
cludes an eigenvalue~eigenvector solution which depends on the problem being a
linear one. Thus radiation heat transfer is given a linear representation with each
time step in such a way that for the step size approaching zero the exact solution
is produced. This appendix presents the linearization within each time step. It is
the common one of modifying the convection coupling to account for the radiation,

which typically amounts to a reduction in the convection coupling.

Consider a node diagram for a surface node of a body.

Taw
TR -
hA
g€EA
Tw
kA
L
L.
where
hA = convection coupling
g€eA = radiation coupling
kT-A = conduction coupling
T AW adiabatic wall temperature of fluid (more properly referred to as
recovery temperature of fluid)
TR = background radiation temperature (usually taken as 0°K)
TW = temperature of surface node
TI = temperature of interior node
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The heat transfer into the surface due to convection and radiation is

_ 4 _ 4 1
Qp =h A (T, ~Ty) * €A (T - Ty) Eq. (C-1)
This may be rewritten as:
Q, = b +hp) A (T, - Ty) Eq. (C-2)
where
N g€ ('1‘4R - T%V)
= ~ Eq. (C-3)
R Taw = Ty
Egq. (C-2) can be rewritten into the form used with CAVE:
Qin = heff A (TAW- TW) Eq. (C-4)
where
hegg ~h*hg Eq. (C-5)

Since TR is usually taken to be 0°K, hR will be negative and, therefore, the
effective convective coupling heff will be less than the actual convective coupling h.
The term hR is a linearized radiative coupling and it is in essence a correction factor
to the convection coupling. Frequently, this correction factor amounts to less than
5% of the convection coupling and is, therefore, of no significant consequence. On the
other hand it is possible, particularly for high altitude {rajectories, to have a
relatively large correction factor, so large that the effective convective coupling is
actually negative. A similar situation can occur late in a re-entry vehicle trajectory
following peak heating. A negative h does not appear to pose any particular difficulty
to the matrix routines within CAVE. However, a difficulty has been observed when
he £ approaches zero (i.e,, radiation coupling and convection coupling essentially
equal). In these situations there are ill-conditioned matrices involved in the prob-
lem solution and the cumulative effect of arithmetic roundoff becomes a serious

matter in the eigenvector-eigenvalue iteration procedure within subroutine IJEN,



This difficulty has been observed on occasion with the manifestation of a failure

within IJEN to obtain estimates for the eigenvalues and eigenvectors that were within
tolerance. (A statement to this effect is printed out by CAVE.) However, the temper-
atures calculated appeared correct. This may be attributed to the eigenvector values
being reasonable although not within tolerance and furthermore not being of great
significance since the body is not changing very much in temperature due to the very
small coupling between it and its environment. Double precision arithmetic would
help to alleviate this "ill-conditioned" difficulty.

One final item to be mentioned is that in calculating hR from Eq. (C-3), CAVE
uses the temperature of the surface nodes at the beginning of time subinterval (end
of previous time subinterval). Therefore, in problems where radiation plays an
important role and where the surface temperatures are varying rapidly with time, the
user should use small time subintervals (perhaps one fifth of the trajectory table

time intervals).
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APPENDIX D

PROGRAMMER ORIENTED DOCUMENTATION OF THE CODE

This appendix presents the details of the CAVE organization and structure. A
simplified logic flow diagram of CAVE is given in Figure D-1.

CAVE is organized in a main program with 36 subroutines. The list of sub-
routines is given in Table D-1 together with the function of each subroutine and the
calling routine. Figure D-2 presents the organization of CAVE in terms of the more
important subroutine calls.

Many subroutines are either identical to, or modified versions of, subroutines
used in the CAPE code (NASA CR-2435), which was developed by Maise and Rossi to
solve the inverse problem of finding the convective heat transfer coefficient given
temperature history information. A modified version of a CAPE subroutine has a
slight change in name to avoid any possibility of the wrong subroutine being used, as
would be the case if both the CAVE and CAPE codes were resident on the same disc.
To illustrate typical name changes, consider the CAPE subroutines PCP, HETRA
and SLAB; in CAVE these subroutines in modified form are referred to as PCP4,
HETRAL and SLAB2, with no significance attributed to the integer value.

Flow charts or descriptions for each subroutine are given in Figures D-3
through D-26. For convenience and completeness, they are given for subroutines
that are identical to the CAPE routines reported in NASA CR-2435 as well as the

new subroutines.

Sets of input data for check cases were presented in Sections 3 through 5 where
the standard output for these were described. For detailed output that maps the
iterations and eigenvalues, the flags LTE and MON must be set equal to +6 in state-
ment cards within SIZEZ2 (normal values are -6). The detailed output refers to the
iterations performed in the subroutine DESDA1 and the subroutines that are called
from it. The detailed output can be used to establish whether sufficient eigenvalues
have been selected by the user since the detailed output shows the contribution of

each term in the equation (Refer to Appendix A, Eq. (A-8) with the number of



e |

nodes N replaced by the number of dominant eigenvalues NE):

NE
Ty =T * z Cyy exp (A t)
j=1

Each succeeding contribution should be smaller than the previous one, with the con-
tribution of the last term being small in comparison with the accuracy desired for the
temperatures. If this is not the case, NE should be increased and the problem rerun
at the expense of increased computer time.

CAVE prints out self-explanatory diagnostic messages for some of the errors
that may be caused by faulty input data preparation. A diagnostic message "FAILURE
IN IJEN" signifies a failure of the Jennings algorithm to converge within the maximum
number of iterations in the subroutine IJEN. This message has been observed on rare
occasions as a result of a matrix being ill-conditioned at a particular time in the flight
trajectory where the radiation-convection coupling is approaching zero (refer to
Appendix C). In these situations the temperatures have appeared to be correct and
the message has been ignored. I corrective action should be necessary it could in-
clude the following: increasing the maximum number of iterations as given by NIJ
in subroutine SIZE2 from its present value of 20; increasing the tolerance on the
convergence test as given by TIJ in subroutine SIZE2 from its present value of 0. 1;
revising the time steps used to avoid this troublesome point in the flight trajectory;

and as a last resort utilizing double precision arithmetic.
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® MATERIAL PROPERTIES
¢ GEOMETRIC DATA:

¥

COMPUTE: e VOLUMES ASSOCIATED WITH NODES
® CONDUCTION SHAPE FACTORS FOR NODES

y

INPUT: @ {NITIAL TEMPERATURES
® TRAJECTORY INFORMATION
® TIME INTERVALS

( INPUT: ® GEOMETRY SELECTION

¢

& FIRST TIME STEP? }.Y.E___..
3 No

COMPUTE FOR EACH NODE:
® THERMAL CAPACITANCE
® CONDUCTIVE COUPLINGS

YES
< TEMP. DEPENDENT PROPERTY?}————-)
‘ NO

COMPUTE: AVERAGE CONVECTIVE

COUPLING AND ADIABATIC WALL ¢
TEMPERATURE FOR THIS TIME STEP
FOR EACH BOUNDARY NODE

‘ YES
< RADIATION TO BE CONSIDERED——D

NO

MODIFY CONVECTIVE
COUPLINGS TO ACCOUNT
FOR RADIATION

OF COEFFICIENT MATRIX
® FIND TEMPERATURES AT END OF THIS
TIME INTERVAL

CALL MATRIX ROUTINES: e FIND EIGENVALUES AND EIGENVECTORS

v

WRITE: ® MACH NUMBER, ALTITUDE, VELOC!ITY AND ANGLE OF ATTACK

AT END OF THIS TIME INTERVAL
® AVERAGE h, hA AND Taw FOR THIS TIME PERIOD
® TEMPERATURES AT END OF THIS TIME PERIOD
® STEADY-STATE TEMPERATURES FOR THIS TIME PERIOD
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v

NO YES
< FINAL TIME S>——>

GO TO START FOR NEXT CASE

FIG. D-1 SIMPLIFIED FLOW OF LOGIC IN CAVE



Table D-1. Subroutines Used in CAVE

Name Called By
SIZE2* CAVE (main prog)
ovLy1o* SIZE2

PCP4* OVLY10
sLAB2* PCP4

LEAD4* PCP4

X24C PCP4

GEN PCP4
MATOUT PCP4

XTABS1 GEN

OVLY20 SIZE2

LINFIT OVLY20,PROP
ATTAC2* OVLY20
LEES1* ATTAC2
NURED OVLY20
DINTK OVLY20

PROP OVLY20
PRPOUT OVLY20
XINTP1 OVLY20
FLATH OVLY20
ATMOS OVLY20,FLATH
POLRT FLATH

Main Purpose

Computes storage locations needed. Compares to number requested
Sets up arrays for PCP4
Reads and writes property data, controls geometry

Computes volumes and conduction shape factors for slab and cooled
panel geometries

Computes volumes and conduction shape factors for leading edge
geometries

Computes volumes and conduction shape factors for basic X24C
geometries

Reads and writes volumes and conduction shape factors for general
geometries

Writes material properties

Reads tabular values of hA and TAW for general geometry problems
Reads initial temperature distribution and flight trajectory. Controls
problem solution, steps time, computes average convection couplings
for each time step. Writes solution each time step

Finds value from a table by linear interpolation

Finds nuode number closest to stagnation point and renumbers nodes
as required by LEES1

Computes ratios h/hSp and TAW variation around leading edge problems

Reads tabular values of hA and TAW as functions of distance and time
Finds value from a table using double interpolation

Computes conduction couplings and mass specific heat product for
each element given conduction shape factors and volumes

Writes node numbers, conductances, capacitances and initial
temperatures

Finds values of several dependent variables from a table by linear
interpolation on a single independent variable

Finds h and TAW for flow over a flat plate
Finds atmospheric pressure, temperature and density for given altitude

Computes the roots of a polynomial

A

feontinued)
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Table D-1. Subroutines Used in CAVE (Cont'd)

Name Called By Main Purpose

TRANS FLATH Determines whether flow over flat plate will be considered laminar
or turbulen_t

DESDA1 OVLY20 Calls eigenvalue and matrix routines. Calcufates temperatures

IJEN+ DESDA1 Obtains dominant eigenvectors and eigenvalues 'of a éiven matrix
(using Jennings method of simultanecus vector iteration)

EIGVC+ DESDA1 Prepares approximate guesses for the eigenvectors to start the Jennings
algorithm iteration for the first time step

BFACS+ IJEN Factorizes a banded positive-definite matrix

BSOLS+ DESDA1, IJEN Using the factors of a given banded positive-definite matrix A as
generated by BFACS solves for X in the system AX =Y

ORNML+ IJEN, DESDA1 Carries out the standard Gram-Schmidt orthonormalization of a
group of vectors

HETRA1" DESDA1 Sets up coefficient matrix (of conductances) in compact form

RVORDR+ IJEN Reorders estimated eigenvalues according to magnitude

AORDER+ IJEN, RVORDER Sets up permutation indices needed for ordering the eigenvalues

DISPLA+ (Various) Prints information, mainly debug special output, in array form

PART+ DESDA1, PCP4 Prints debugoutput information and intermediate timing of calculation

DATE+ PART Determines data of run

SWITCH+ DISPLAY Converts columns of a matrix to rows or visa versa

SCAPR2+ (Various) Computes scalar product of two vectors
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CAVE: ASSIGN TOTAL
DIMENSION

SIZE2: READ JGEO, L, M, NE
COMPUTE DIMENSIONS OF ARRAYS

2ND

: l‘IST

LOVLY10: SET UP CALL FOR PCP4 I

PCP4: READ & WRITE LABEL
READ & WRITE PROPERTIES

x NN

~

GEN: (GENERAL GEOMETRY)

READ: VOLUMES
CONDUCTION SHAPE FACTORS
CONVECTION COUPLINGS
ADIABATIC WALL T

X24C: (X24C STRUCTURAL ARRANGEMENT)

___

READ & WRITE AX's, AY’s,S1,S2,ETC.
COMPUTE CONDUCTION SHAPE FACTORS
COMPUTE VOLUMES

COMPUTE CONVECTION COUPLINGS FOR

:

SLAB2: (SLAB & COOLED PANEL
GEOMETRIES)
READ & WRITE AX's, AY's TAU, S1, ETC.
COMPUTE CONDUCTION SHAPE FACTORS
COMPUTE VOLUMES
COMPUTE CONVECTION COUPLINGS
FOR COOLED SURFACES

COOLED SURFACES

LEAD4: (LEADING EDGE GEOMETRY)

READ & WRITE MCAP, THETA, AX's, AY's, ETC.

COMPUTE CONDUCTION SHAPE FACTORS

COMPUTE VOLUMES

COMPUTE CONVECTION COUPLINGS FOR
COOLED SURFACES

FIG. D-2 ORGANIZATION OF CAVE IN TERMS OF THE MORE IMPORTANT SUBROUTINE CALLS

(SHEET 1 OF 2)
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0OVLY20:

READ INITIAL T DISTRIBUTION

READ TRAJECTORY INPUTS
READ TIME INTERVALS
READ HEATING MODIFIERS

FIRST TIME STEP

OR
T DEPENDENT PROPERTY? /

N

YES’ PROP: COMPUTE THERMAL CAPACITANCE

AND CONDUCTION COUPLINGS

—

<_

FIRST TIME STEP?

>_

YES PRPOUT: WRITE NODE NUMBERS, THERMAL
> CAPACITANCES, CONDUCTION COUPLINGS

SLAB, COOLED PANEL
OR X24C GEOMETRY
WITH h COMPUTED
BY CAVE?

YES FLATH: COMPUTE CONVECTIVE
———4 COEFFICIENT AND ADIABATIC WALL
TEMPERATURE FOR FLAT PLATE SURFACE

psem—

LEADING EDGE GEOMETRY
WITH h COMPUTED BY

CAVE?

.

e

FIND TEMPERATURES

ATTAC2: FIND NODE _

ves | NumBER cLosesTTo | LREST: COMPUTE

——Pd STAGNATION POINT AND sp & TAW ‘

RENUMBER NODES FOR |g—] AROUND LEADING
LEES1 EDGE

- g

HETRA1: SETS UP
COEFFICIENT MATRIX

fpespat:

AT END OF THIS
TIME INTERVAL

WRITE:

® h

e hA

® Taw
T

TSS

R

-Pe FIND EIGENVALUES

AND EIGENVECTORS IN COMPACT FORM

..h

¢
IJEN: FINDS EIGEN-
VALUES & EIGENVECTORS

TIME EQUAL
FINAL TIME?

YES

Lo RVORDR: REORDER
EIGENVALUES ACCORD-
4 (NG TO MAGNITUDE

® COMPUTE STEADY-
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Y- Lol BsoLs: soLvEs
STATE TEMPERA MATRIX EQUATION
TURES - r

AX =Y
e COMPUTE TEMPER-

ATURES ENDOF || SCAPR2: COMPUTES
THIS TIME ¢] SCALAR VECTOR
INTERVAL PRODUCT

FIG. D-2 ORGANIZATION OF CAVE IN TERMS OF THE MORE IMPORTANT SUBROUTINE CALLS
(SHEET 2 OF 2}



READ INDEXES:
— GEOMETRY SELECTION

JGEO
L

M

NE

-~ NO. OF ELEMENTS THROUGH MATERIAL
— NO. OF ELEMENTS ALONG SURFACE OF MATERIAL

— NO. OF EIGENVALUES

T

WRITE INDEXES

USER-ASSIGNED
TOTAL DIMENSION
SUFFICIENT

CALL OVLY10

CALL OVLY20

NO

WRITE: “INCR
DIMENSION OF S
AND VALUE OF
MWORDS""

FIG. D-3 SUBROUTINE SIZE2 FLOW CHART
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(" READ:

LABEL
EPS1, TBG1

v

READ:
MATERIAL
PROPERTIES

/

JGEO

CALL GEN CALL SLAB2 CALL LEAD4 CALL X24C

WRITE:
MATERIAL
PROPERTIES

FIG. D4 SUBROUTINE PCP4 FLOW CHART
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READ:
AX ARRAY

AY ARRAY

TAU, R
$1,52,...,HCOOL

| COMPUTE VOLUMES OF ELEMENTS _]
I ASSIGN MATERIAL NUMBER TO EACH NODE ]

| COMPUTE COND. SHAPE FACTORS IN X-DIRECTION |

| COMPUTE COND. SHAPE FACTORS IN Y DIRECTIONJ

_ ¥

COMPUTE X-DISTANCES OF CENTERS OF
SURFACE ELEMENTS

SLAB
OR
COOLED PANEL
PROBLEM?

WRITE:

X, Y, TAU, EPS1 TBGI1
AX ARRAY

AY ARRAY

COOLED
PANEL

LOCATE NODES ON BOUNDARY
OF COOLED PANEL MODIFY
VOLUMES AND CONDUCTION
SHAPE FACTORS

NODE !
ADJACENT
TO COOLING
PASSAGE?

SET

TAW{H  TCOOL
H{l}  HCOOL

HA(l) HCOOL "axth

J

SET
VOLUME AND CONDUCTION
SHAPE FACTORS EQUAL TO ZERO

NODE |
IN COOLING
PASSAGE?

- |

NODE |
ADJACENT TO
INSULATED
REGION?

MODIFY-
CONDUCTION SHAPE FACTORS

& ]

v

WRITE-
‘COOLED PANEL :
$1,82, , TCOOL

FiG. D-5 SUBROUTINE SLAB2 FLOW CHART
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READ:

MCAP, THETA

AX ARRAY

AR ARRAY

TAU

RP1,RP2, ..., TCOOL2

]

I COMPUTE PHI{1} AND X{1} ALONG SURFACE I

| compuTE voLumes FoR NODES |

'

l ASSIGN MATERIAL ‘NUMBER TO EACH NODEJ

'

COMPUTE CONDUCTION SHAPE FACTORS FOR X DIR,
CYLINDRICAL PORTION

DOES
NOSE MODIFY EFFECTED VOLUMES
COOLING PASSAGE D>-=tE2 AND SET:
EXIST? HINN)  HCOOL1
TAW(NN] TCOOL1,ETC.
o I

i

COMPUTE CONDUCTION SHAPE FACTORS FOR X DIRECTION,
WEDGE PORTION

MODIFY EFFECTED VOLUMES

DOES AND CONDUCTION SHAPE FACTORS

AFT
COOLING PASSAGE >—YES 4 X.0!RECTION
EXIST? HINN) HCOOL2

TAW(NN) TCOOLZ2, ETC.

NO : 1
4

COMPUTE CONDUCTION SHAPE FACTORS FOR Y DIRECTION,
CYLINDRICAL PORTION

DOES
AFT
COOLING PASSAGE
EXIST?

YES MODIFY EFFECTED
| CONDUCTION SHAPE FACTORS
Y OIRECTION

]

WRITE.
“LEADING

FIG. D-6 SUBROUTINE LEAD4 FLOW CHART
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READ:

AX ARRAY
AY ARRAY
S$1,82,83,54
W1, W2, ..., W7
RC ARRAY

MP ARRAY

LOCATE MATERIAL INTERFACES

v

COMPUTE VOLUMES FOR NODES

L ASSIGN MATERIAL NUMBER TO NODES
COMPUTE CONDUCTION SHAPE FACTORS
FOR RECTANGULAR GEOMETRY

v

COMPUTE X - DISTANCES OF TOP SURFACE NODES

v

LOCATE NODES ON BOUNDARY OF
GEOMETRY.

MODIFY VOLUMES AND CONDUCTION
SHAPE FACTORS

LOCATE NODES NOT ACTUALLY
PART OF STRUCTURE. .

SET VOLUMES AND CONDUCTION
SHAPE FACTORS EQUAL TO ZERO

WRITE:
“X24C GEO.”

FI1G. D-7 SUBROUTINE X24C FLOW CHART
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READ:
VOLUMES

READ:
MATERIAL NOS.

v

—
READ:
CONDUCTION
SHAPE
FACTOR,
X-DIRECTION

v

[~ READ:
CONDUCTION
SHAPE
FACTOR,
Y-DIRECTION

[~ READ:
CONVECTIVE

COUPLINGS

IS
CONVECTIVE

VALUE READ EQUALS NEG.
TABLE NO. FOR TIME

COUPLING DEPENDENT CONVECTIVE
NEGATIVE? COUPLING
SET: IHA (NN} = —-DUM
J

READ:
ADIABATIC
WALL
TEMPERATURE

TEMPERATURE
NEGATIVE?

VALUE READ EQUALS NEGATIVE
TABLE NO. FOR TIME
DEPENDENT ADIABATIC

WALL TEMPERATURE .

SET: ITAW (NN) = —DUM

J

CALL XTABS1

IFG. D-8 SUBROUTINE GEN FLOW CHART




THERMAL
PROPERTIES
TEMPERATURE
DEPENDENT?

WRITE:

RHO

k ARRAY
Cp ARRAY

T ARRAY

FIG. D-9 SUBROUTINE MATOUT FLOW CHART
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READ:
KODE, LL1,LL2, TITLE

LAST
TABLE
READ IN?

WRITE:

“TABLE FOR HA
AND TAW”
TABLE NO.
L1,L2, TITLE

READ:

TABLE ARRAYS

:

WRITE:
TABLE
ARRAYS

FIG. D-10 SUBROUTINE XTABS1 FLOW CHART



READ:
INITIAL T

GENERAL
GEOMETRY?

SLAB,
COOLED PANEL

OR X24C
ee | LEADING 5
EDGE GEOMETRY?
y
READ: READ:
SWEEPA, .. ., TURBL REFX, CODEX, HMOD!

H& Taw H& Taw
TO BE CALCULATED 70 BE CALCULATEDSREAD IN
BY CAVE OR BY CAVE OR
READ IN? READ IN?
READT TO BE CALCULATED H& Taw
TOBE
¥ CALCULATED
y L
CALL NURED READ: CALL NURED
(READ 4 TABLES) GAM, RGAS, PR {READ 2 TABLES)
READ:
TRAJECTORY
TABLES
¥
READ:

TIME INTERVALS

FIG. D-11 SUBROUTINE OVLY20 FLOW CHART (SHEET 1 OF 4)
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wiLL
CONVECTIVE
HEATING COEFFICIENT
BE MODIFIED?

YES CALL NURED

\ (READ TABLE)

NO

-

@ ll LOOP 2000: STEP THROUGH TIME INTERVALS I

st
TIME STEP
OR
TEMPERATURE
DEPENDENT
PROP?

YES

CALL PRQP
AN

1st
TIME YES

+{ CALL PRPOUT
STEP? \

SLAB,
COOLED PANEL,
OR X24C
GEOMETRY?

@1 NO

H& Taw

TO BE CALCULATED CALC CALL LINFIT
BY CAVE OR *{ (LOOK UP TRAJ

READ FROM
TABLE?

TABLE

PT)
CALL ATMOS
CALL DINTK
COMPUTE AVERAGE H, HA

AND Taw AT EACH CALL FLATH
SURFACE NODE FOR THIS
TIME PERIOD

FIG. D-11 SUBROUTINE OVLY20 FLOW CHART (SHEET 2 OF &)
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LEADING

GENERAL EDGE OR
GENERAL
PROBLEM?
CALL XINTPI LEADING EDGE
(LOOK UP H AN

JAW)

H AND Taw
TO BE CALCULATED
BY CAVE OR
READ FROM
TABLE?

CALL LINFIT
{LOOK uP

TRAJECTORY
£T)

CALCULATE

COMPUTE AVERAGE HA
AND Taw AT EACH
NODE FOR THIS

TIME PERIOD

CALL ATMOS

CALL DINTK
(LEE SURFACE}

CALL DINTK
(WINDWARD
SURFACE)

©

LAMINAR | compyTe
TURBULENT Hgp
FLOW
TURBULENT
COMPUTE Hgp
A i
[EOMPUTE H AROUND LEADING EDGE]
- I
COMPUTE AVERAGE H, HA AND Taw
AT EACH SURFACE NODE
FOR THIS TIME PERIOD
©
ARE
SPECIAL
. HEATING COMPUTE AVERAGE
EFFECTS TO BE CALL DINTK H MODIFIER
CONSIDERED?

FIG. D-11 SUBROUTINE OVLY20 FLOW CHART (SHEET 3 OF 4)
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H AND Taw
CALCULATED
BASED ON
TRAJECTORY?

WRITE:

MACH NO.
ALTITUDE
VELOCITY
ANGLE OF ATTACK

RADIATION
TOBE
CONSIDERED?

YES

MODIFY CONVECTIVE
COUPLINGS TO
ACCOUNT FOR
RADIATION

CALL DISPLA
(WRITE H)

(- -

CALL DISPLA
(WRITE HA)

CALL DISPLA
(WRITE TAW)

CALL DISDA1
(MATRIX SOLN)
CALL DISPLA
(WRITE T)
LoopP
NO 2000

CALL DISPLA
(WRITE Tgg)

COMPUTE
HEAT INPUT
AT EACH NODE

CALL DISPLA

GA

FINISHED? .~
YES

FIG. D-11 SUBROUTINE OVLY20 FLOW CHART

(WRITE QSUM)
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P s —— o
R ="

S

NO

xXP < YES
RANGE OF

TABLE

NO

XP> YES EXTRAPOLATE
RANGE OF BELOW TABLE
TO FIND YP

TABLE

LOCATE POINTS

X{I) ANDX (1 +1)
IN TABLE, WHICH
FALL ON EITHER

R

SIDE OF XP
EXTRAPOLATE
ABOVE TABLE
TO FIND YP
INTERPOLATE
TO FIND YP

|

"(SOURCE: NASA CR-2435)

FIG. D-12 SUBROUTINE LINFIT FLOW CHART*
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ADD POINT AT
STAGNATION POINT
(X =0, ¢=90°) AND
RELABEL X AND ¢
ACCORDINGLY

CALL LEEST,

LOCATE SURFACE
ELEMENT WHOSE
CENTER IS CLOSEST
TO STAGNATION
POINT

4

FORM TABLE OF

X AND ¢ VALUES
ABOVE AND’ ABOVE STAGNATION
BELOW POINT
STAGNATION
POINT
CALL
LEES1t
RELABEL Taw
AND HR TABLES FORM TABLE OF
TO BE CONSISTENT X AND ¢ VALUES
WITH OVLY20 BELOW STAGNATION
NUMBERING SYSTEM POINT
CALL
LEES1

FIG. D-13 SUBROUTINE ATTAC2 FLOW CHART
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COMPUTE FLOW
PROPERTIES
AFTER NORMAL
SHOCK

%

COMPUTE P (I) X U (1)
AROUND LEADING
EDGE USING MOD!-
FIED NEWTONIAN

NO

YES

I=1+1

|

COMPUTE P (1) X U (1}
USING PRANDTL -
MEYER EXPANSION

INTEGRATE P X U
NUMERICALLY TO
EVALUATE H (I)/Hgp

FIG. D-14 SUBROUTINE LEES1, FLOW CHART
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| LooP: 400 ALL NODES ]4:

GEOMETRY?

IFIND:
k AND oCp

FOR MATERIAL 2

FIND:
k AND pCp

FOR MATERIAL 1

MATERIAL 1 MATERIAL 2

INTERFACE
BETWEEN 1 AND 2

COMPUTE AVERAGE
k AND pCp FOR MATERIAL

1AND 2
—P1é:

ESTABLISH LOCATION

OF NODE, i.e., WHICH
MATERIAL; COMPUTE

k AND pCp
— —

COMPUTE CONDUCTION COUPLINGS
AND THERMAL CAPACITANCES

LOOP NO

FINISHED?

F1G. D-15 SUBROUTINE PROP FLOW CHART
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THERMAL
CAPACITANCE
EQUAL
ZERO

YES SET NODE
NUMBER =0

CALL DISPLA
(WRITE NODE
NUMBERS)

THERMAL
CAPACITANCE
EQUAL
ZERO?

YES SET MATERIAL
NUMBER = 0

CALL DISPLA
(WRITE MAT NO.

CALL DISPLA
(WRITE CAP)

CALL DISPLA
(WRITE COND X)

CALL DISPLA
(WRITE INIT
TEMP)

CALL DISPLA
{(WRITE COND Y)

FIG. D-16 SUBROUTINE PRPOUT FLOW CHART
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XP < YES

RANGE OF
TABLE?

XpP >

RANGE OF HYES

TABLE?

LOCATE POINTS
X(1) AND X(I1+1)
IN TABLE THAT
FALL ON EITHER
SIDE OF XP

4

INTERPOLATE
FIND RATIO

COMPUTE VALUES

FOR ALL DEPENDENT
VARIABLES, FCT (J)

WRITE:
“INDEP.
VARIABLE
OFF
TABLE"

FIG. D-17 SUBROUTINE XINTP1 FLOW CHART
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MACH -

NUMBER

v

0=TAN' (14/M2-7)

COMPUTE SHOCK
ANGLE

‘ CALL POLRT

|

COMPUTE CONDITIONS
BEHIND SHOCK

CALL ATMOS

CALL ATMOS

COMPUTE FLOW
CONDITIONS

LAMINAR

TURBULENT
FLOW?

TURBULENT

COMPUTE TURBULENT
HAND Ty

COMPUTE LAMINAR
HAND Taw

FIG. D-18 SUBROUTINE FLATH FLOW CHART
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ALT <82345 FT .
NO

COMPUTE PRESSURE

COMPUTE TEMPERATURE

COMPUTE PRESSURE
AND TEMPERATURE
YES
ALT > 105518
NO
COMPUTE TEMPERATURE
COMPUTE PRESSURE >
AND TEMPERATURE
A 4

COMPUTE DENSITY

FIG. D-19 SUBROUTINE ATMOS FLOW CHART




ES)
1
o

SET TURBULENT

5
REYNOLDS >2x 10 FLOW INDICATOR

SET LAMINAR
FLOW INDICATOR

COMPUTE

TRANSITION

REYNOLDS

NUMBER, RET
COMPUTE SET
TRANSITION | YES TURBULENT
REYNOLDS FLOW
NUMBER, RET INDICATOR

NO ,

COMPUTE SET
TRANSITION LAMINAR
REYNOLDS B FLOW
NUMBER, RET INDICATOR
COMPUTE
TRANSITION | |
REYNOLDS
NUMBER, RET

FIG. D-20 SUBROUTINE TRANS FLOW CHART
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CALL HETRA1
(SET UP MATRIX
IN COMPACT

FORM)

SET UP
TEMPERATURE
ARRAY. INITIAL
TEMPERATURES THIS
TIME INTERVAL
EQUAL FINAL
TEMPERATURES LAST
TIME INTERVAL

COMPUTE
STEADY
STATE
SOLUTION

CALL EIGVC
(INITIAL GUESS
FOR E & E's)

CALL ORNML
(ORTHONORMALIZE)

CALL IJEN
E&E’s)

CALL RVORDR
(ORDER E & E's)

COMPUTE
TEMPERATURES

SET
Tss= Taw

158

— AT END OF
THIS TIME
INTERVAL

FiG. D-21 SUBROUTINE DESDA1 FLOW CHART



CALL BFACS

CHOLEWSKI
DECOMPOSITION

INTO UPPER + LOWER
TRIANGULAR MATRIX

'

INITIALIZE
CONSTANTS

1

CALCULATE

g8=VvT Av

USING SPECIAL

BANDED STRUCTURE OF A

1

SET EIGENVALUES
TO RAYLEIGH QUOTIENTS

(D = DIAG [B])

]

CALCULATE
EIGENVALUE ERRORS
& DETERMINE MAX ERROR

!

v=alvy
{FROM BSOLS)

COMPARE
MAX ERROR
WITH
MAX ALLOWED

EQUAL
TO MAX
ALLOWED

FIG. D-22 SUBROUTINE IJEN FLOW CHART*

SETBTO
T":%SF:' LESS THAN JENNINGS
MAX NO. ITERATION :JE?&QON

MAX ALLOWED

1

ORTHONORMALIZE
EIGENVECTORS
+

ORDER THEM WITH
RESPECT TO
EIGENVALUES

1

ORDER
EIGENVALUES

F

CORRECT
EIGENVALUES

1

*(SOURCE: NASA CR-2435)
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P INDEX| FROM 1 TOM

r—.. INDEX J FROM 1 TOM

a=yLy yLig

]

INDEX 1| FROM I TON

'

SETVL =ViLy-aV¥u

v
—pt 2=/ VLT Vit
1]

vy =a 7L|

LOOP
FINISHED?

NO

*(SOURCE: NASA CR-2435)

FIG. D-23 SUBROUTINE ORNML FLOW CHART*
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L2

SET=0FIRST L

ELEMENTS OF SUPERDIAGONAL
AS REQUIRED BY BFACS

v

SET UP Lth SUPERDIAGONAL
ELEMENT IN A(lJ, 3)

¢

SET UP 1st SUPERDIAGONAL
ELEMENT IN A(lJ, 2)

¥

SET UP MAIN DIAGONAL
IN A, 1)

v

UNUSED SPACE SET
EQUAL TO ZERO

LEADING
EDGE
PROBLEM?

SET UP L/2 CROSS-ELEMENTS
CONTAINING PATHS FOR
LEADING EDGE (LOOP 30)

FIG. D-24 SUBROUTINE HETRA1 FLOW CHART
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QUANTITY

EIGENVALUES
EIGENVECTORS
RANK VECTOR
PERMUTATION VECTOR
EIGENVECTOR DIMENSION
NUMBER OF EIGENVECTORS
DIMENSION OF ARRAY

USED TO STORE EIGENVECTORS

SYMBOL

ZE2rx<>

MID

INPUT/OUTPUT

IN+QUT
IN+OUT
ouT
ouT
IN
IN

IN

CALCULATE PERMUTATION
VECTOR TO ORDER
EIGENVECTORS (CALL AORDER)

|

SET RANK
(LOOP 1)

(LOOP 3)
INTERCHANGE:
EIGENVALUES,
EIGENVECTORS
RANK,

PERMUTED INDEX

DIMENSION

R(MM)
V{(MID, MM)
K(MM)
L(MM)

*(SOURCE: NASA CR-2435)

FIG. D-25 SUBROUTINE RVORDR FLOW CHART*
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| o A

SCAPR2 CALCULATES THE INNER
PRODUCT OF TWO VECTORS STORED
AS EQUALLY SPACED WORDS IN FORTRAN ARRAYS

SUM=0

SCAPR2 = SCAPRO

RETURN

*(SOURCE: NASA CR-2435)

FIG. D-26 SUBROUTINE SCAPR2 FLOW CHART*
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Sheet D-1. Subroutine NURED Description (Sheet 1 of 4)
Purpose
To read a set of tables for functions 2 variables
Program Description
The input data must be structured as specified below. The calling program must contain the statement,
COMMON STG(L), where L >{L1(1)+1) (L2(1)+1) + ... + (L1(M)+1) (L2(M)+1). Program restrictions
are noted below:
Input Parameters
FORTRAN Name Description
NUMTBL = 1 for first call to NURED
= K for replacement of tables, where K is the table number of the first table

being replaced

MANDAN = 0 for initial read in
= 1 for table replacement

L1 Array of dimension M, where M is the maximum number of tables in storage
at any one time

L1(K) = number of X; in table K

L2 Array of dimension M
L2(K} = number of y; in table K

NUMPTS Array of dimension M+1
NUMPTS(K) = the number of table entries preceding table K

Output Parameters
NG To be set to 0 in the calling program
NG = 0 if tables have been read correctly
NG = 1 if there has been a read in error
Calling Sequence
CALL NURED {(NUMTBL, MANDAN, NG, L1, L2, NUMPTS)

Input Format

For each table the functions values, F, (X,Y) are entered for consecutive groups of nine values of X, over all
values of Y

{continued)
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Sheet D-1. Subroutine NURED Description (Sheet 2 of 4)
Input Format (Cont'd)

The input data must be structured as indicated. First, there is a header card with the appropriate entries in
the indicated columns

1-2- 34 70 71-72
L L2 : COMMENTS Seq #

Next, for the first 9 values of X the input data takes the form

1-7 8-14 15—-21 22-28 ... B7-63 64-70 71-72
Y4 F(1,1) F(2,1) F(3.1) ... F(8,1) F(9,1) Seq #
Yi2 F(1,L2) F(2,L2) F(3,L2) ... F(8,L2) F{9,L2) Seq #

For the second group of 9 values of X, the form of the input is

X10 X1 X12 e X7 X18 Seq #
Y F(10,1)  F(11,1) F(12,1) .. FO7,1) F(18,1) Seq #
Yo FIIOL2) F(I1,L20  F12L2) ... F(7L2)  F(18L2)  Seq#

Additional values of X are handled similarly. When all X values have been accounted for, the next table
of values for the next function is set up in the same way. When all data tables which are to be read in at
any one time have been set up as indicated, a blank card is placed at the end of the data deck.

The parameters used above are defined as follows:

L1 = Number of X values in table (12)
L2 = Number of Y values in table (12)
Seq # = Sequence number of a card within a table, beginning with 0 for the first card (12)
F(i,9 = Function value for X YJ (E7.0)
X = Argument 1 values in table (E7.0)
Y, = Argument 2 values in table (E7.0)

The figure illustrates the card format for the tables (see Sheet 4 of Sheet D-1).

(continued)

165



Sheet D-1. Subroutine NURED Description (Sheet 3 of 4)
Program Restrictions

The tabular values of the variables X and Y must appear in algebraically increasing order. The variables
X and Y, and the function values must:

® Be single precision numbers less than 99999E9
® Have a maximum of 7 significant digits if positive

® Have a maximum of 6 significant digits if negative

A maximum of 99 cards is allowed for each table
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291

CARD FORMAT FOR TABLES

CONTINUATION CARDS FOR REMAINING Y VALUES

v2 | foo2 [ Fava | Fuz2 [ Fosa [ rasa [rosa | faea [ Faza [rosa | | O\

Y1

[ Fo, 0 | Fann [Fozn | ez [ roa 0 | fas 0 | raen | Fazon | Fas o | | \

I xio | x| xi2 [ x13 | x14—r x5 | x6 | x17 | xi8 | ] \

v2 | i,

CONTINUATION CARDS FOR REMAINING Y VALUES
2 [ F22 [Fe2 [ rea [ rs2 | rea [roa Trea | ro2 jos] O\

Y1
COL 7

| Fi)
14

| F2n | Fan | Fan [ Fen | Fen | Foon | Feon | Feon fo2] O\
21 28 35 42 49 56 63 70 72 Nk

2

Tmezlxalx4|x5|xs|x7lxa|x9l01|\
4

70 72

L1]L2|

COMMENTS foo| \ T
—

SHEET D-1 SUBROUTINE NURED DESCRIPTION (SHEET 4 of 4)



Sheet D-2. Subroutine DINTK Description (Sheet 1 of 3)
Purpose
Table lookup and linear interpolation for several functions of two variables.
Analytic Description
In the derivation of STINT (6.1.1.5) equ;tions, we find the linear interpolation form

fix, 1)y - yo) * ix,0) (y1 - which, by algebraic manipulation becomes

fix,y) =
Y1~-Yo
lvy-v)lyg-v) fix,00  f(x,1)
{i) fix,y) = -
Yi-Yo Yo~V VT"V)

Analytic Restrictions
The function f should be linear
Program Description
3 {x,y), f2(x,y), fm {x,y} are found for x, < x < x; jandy; <y < ¥;+1. using equation (i)
Program Restrictions
Extrapolation will not be performed. The calling program must contain the statement COMMON STG(L),

where

m
L> ) (L1 + 1) (L20) +1)
i=1

Input Parameters

FORTRAN Name Description
L1, L2, NUMPTS As described in NURED
KODE Dummy array of length m. Initialize to zero in the calling program
N1HIB4 Dummy array of length m
N2HIB4 Dummy array of length m
ARG1 Vatue of x argument
ARG2 Value of y argument
NUMTBL Number of the first table in which interpolation wili take place
L3 Number of functions to be interpolated
{continued)
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‘Sheet D-2. Subroutine DINTK Description (Sheet 2 of 3)
" Output Parameters

FCT Arrayof length L3, consisting of the elements FCT(1) = Fj {(x.y), ..., _
FCT(L3) = fn(X,y). {(IFNUMTBL, n=j+L3-1) ) .

NG To be initialized to zero before calling DINTK
NG = 0 indicates a normal return
NG = 2 indicates a machine error or an error in the calling sequence
NG = 3 indicates that x or y is outside of the range of the tables

Library Supplied Routines

User must call NURED to read in the tables of x, v, f1 {x,y), .... fm(x,y) prior to calling DINTK
Calling Sequence

CALL DINTK (L1, L2, NUMPTS, KODE, N1HIB4, N2HIB4, ARG1, ARG2, NUMTBL, L3, FCT, NG)
List of Variables

FORTRAN Name Description

L1

L2
NUMPTS
KODE
N1HIB4
N2HIB4
ARG1
ARG2
NUMTBL
L3

FCT

NG

STG Table of values of input

X Temporary storage for ARG 1
Y Temporary storage for ARG2
ANS Working storage

FACTOR Working storage

F W Working storage

NT
NCHECK1
NCHECK2
INC L Indices
K
NLO1
NLO2 '
NBLO1
NBLO2

{continued)
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Sheet D-2.
List of Variables (Cont'd)

FORTRAN Name

Subroutine DINTK Description (Cont'd) (Sheet 3 of 3)

Description

NHI h
NHi2
JINDEX
KINDEX
]

J >
M

LDUMY1
LDUMY2
LENGTH
LIMLOW
LIMUPR
KTEST1
KTEST2
KTEST3
KTEST4

go-=C
|\

LB
NDUMY1
NDUMY2

170
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indices

DO loop indices

Working storage
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Sheat D-3. Subroutine POLRT Description
Purpose
Computes the reat and complex roots of a real polynominal
Usage
Call POLRT(XCOF,COF,M,ROOTR,ROOTI {ER)
Description of Parameters

XCOF = Vector of M+1 coefficients of the polynominal ordered from smallest to largest power
COF = Working vector of length M+1
M = Order of polynominal
ROOTR = Resultant vector of length M containing real roots of the polynominal
ROOTI = Resultant vector of length M containing the corresponding imaginary roots of the polynominai
IER = Error code where:

{ER=0 Noerror

IER=1 M less than one

IER=2 M greater than 36

{ER=3 Unable to determine root with 500 interations on 5 starting values

IER=4 High order coefficient is zero

Remarks

Limited to 36th order polynominal or less
Fioating point overflow may occur for high order polynominals but will not affect the accuracy of the results

Subroutines and Function.Subprograms Required
None
Method

Newton-Raphson iterative technique. The final iterations on each root are performed using the original
polynominal rather than the reduced polynominal to avoid accumulated errors in the reduced polynominal
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Sheet D-4. Subroutine EIGVC Description (From NASA CR-2435)

EIGVC computes guesses of the eigenvalues, eigenvectors and associated permutation index that are necessary to
start the iteration in the Jennings method to calculate eigenvalues and eigenvectors. The formulae used for these

guesses are:

ith eigenvalue R = -i

ith eigenvector A == e+y/‘h/2) sin{ % + "'E' (i - 1)}

v FOR TOP )
HALF
SLAB h
FOR BOTTOM
y HALF
e b >




T N =
I

.515_;.

.t

Sheet D-5.° Subroutine BFACS Description (Sheet 1 of 2) (From NASA CR-2435)

Given a special, L-banded, positive or negative definite symmetric N-th order matrix, S, decompose it into the
product:
s =uTpt'u

where U is an L-banded nonsingular upper triangular matrix with unit diagonal elements, and D is a nonsingular
diagonal matrix.

The S matrix is inputted as elements of three one-dimensional arrays, A, B, E. The N elements of A are the main
diagonal elements of S, the leading (N—L) elements of E are the L-th super- {and sub-) diagonal elements of S. The

N-1 elements of B are super- (and sub-) diagonal elements of S. *The trailing L/2 elements of E {optionally) define

main cross diagonal elements of the upper L-th order submatrix of S. In general, later definitions override earlier one,
e.g.if L = 1, B (not E) defines the super diagonal elements of S. In the case for which BFACS is intended, most elements
inside the band are zero. The cross diagonal is installed only if the argument, ¢, is not zero. The S matrix is topolo-
gically equivalent to conduction paths in a slab (leading edge if a ¥ 0); consider the N = 12, L = 4 example:

_I1Ts7toe 1 2 3 4 5 6 7 8 9 10 1 12
V4 $ +
r ,{2%16 t10 B oo
NOSE! (Ll el 1 |a b 0 jejpye 0 0 0 0 O O o |
v 3l i . r__'___]
G o P 2 | by ajeqt0 ‘0 e 0 0 0 0 0 O
418 112
== |
3|0 jeyiag b3, 0 0 e3 0 0 0 0 O
Note: b4=b8=0 _._.I__J
for the conduction 4 e 0 b as ! 0 0 e 0 0 0 0
problem generally 121_ 3 4_+ 4
but must be explicitly - - - - - . T .
made 0 for BFACS 5 e 0 O @|as bg 0 0 ,e 0O 0 O
Note:  nose paths 6 0 e O 0 lbg ag bg O I o eg O 0
are included eq4. e, | |
are used (a # 0). 7 0 0 e 0 I0 b6 ag b-, | 0 0 eq 0
|
8|0 0o 0 elo 0o b, gl 0 0 e
L — — — — 4 == o o ]
9 0 0 0 0 @ 0 0 | ag bg ] 0
100 0 0 0 0 (&) 0 0 lby ag b5 0
|
11 0 0 0 0 0 0 ey 0 I0 b10 ajq b.”
12 /0 0 0 0 0 0O 0 eg : 0 0. byy a9
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Sheet D-5. Subroutine BFACS Description (Sheet 2 of 2) (From NASA CR-2435)

To take advantage of both symmetry and the band form U is stored in a'rectangular array of size MID by L,

where MID > N; the bottom row is used as scratch storage, rq, o, - - .
zeroed out (for convenience in printing only). U appears as:

v23
U3z
ua3
Us3
Us3
uzs
ug3

ug3

0

3

STORED A
12
T ju w2
2 |uz v
3 juz v32
4 |vay va2
5 {ug1 Ys2
6 |vus1 Ys2
7 v v
8 |ugy ug2
9 [ugy ugy
10 u10’1u1020
1" CIER 0
12 r 03

Uig
Y24
|
Uas
Usq
Ys4
uza

ugq

a4

10

"

12

NON ZERO ELEMEN

2 3
U1 Y12
1 U21

H

uz2

ust

Y14
uz3
uz2

Y41

usza
Ua3
Us2

Usq

8

Ygq
Us3
U2

uzi

TS OF U MATRIX

9

Usg
us3
Y72

ug1

10

Usa
uz3
ug2

Ugq

L and the unused bottom triangle is

112

U74

ugz g4
Yga ‘g3
Y101 "102

T U,

1

The N elements of D'1 are stored in an N-array. For the usual case of S being either positive-or negative-definite,
these elements are all positive or all negative, respectively. However the routine will “work"* provided only that the
leading N principle minors are non-zero. For details see the following article which guarantees high accuracy only for
the definite cases of usual interest: ""Symmetric Decomposition of Positive Definite Band Matrices’’, R.S. Martin,
J.H. Wilkinson, C. 1/4, LINEAR ALGEBRA — HANDBOOK FOR AUTOMATIC COMPUTATION, VOLUME II,

Springer-Verlag, 1971,




Sheet D-6. Subroutine BSOLS Description (From NASA CR-2435)

Given the product form decomposition of an L-banded symmetric matrix, S = UTD ' U, as calculated by the
BFACS subroutme BSOLS solves a system of N linear equations with M right hand sides:
5(Y1Y2 l = !Yl Yy - YM}

The routine st mply carries out the standard forward substitution phase:

z=UTy
followed by the standard backward substitution phase:

x=U'Dz

The only unusual aspect is the rather unorthodox storage scheme which is described in the documentation for
subroutine BFACS. This scheme is necessary to exploit the banded symmetric form of S in the most efficient way
in terms of computer memory. For details see: R.S. Martin, J.H. Wilkinson, “’Symmetric Decomposition of Positive

Definite Bank Matrices”, in: Linear Algebra—Handbook for Automatic Computation, Volume i, C. 1/4, Springer-
Verlug, 1971
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Sheet D-7. Subroutine AORDER Daescription (From NASA CR-2435)

PURPOSE: ORDER A SET OF REAL NUMBERS

CALLING SEQUENCE: CALL AORDER (A, N, IPERM)

NAME DIMENSION
INPUT A A(N)
N
QUTPUT {PERM {PERM(N)

AORDER CALLS NO OTHER SUBROUTINES

DESCRIPTION

ELEMENTS TO BE ORDERED
NUMBER OF ELEMENTS = INI
N > 0 INCREASING ORDER

N <0 DECREASING ORDER

ORDER VECTOR -
SPECIFIES THE SEQUENCE
OF ELEMENT INDEX NUMBERS
WHICH WILL PRESENT
A AS AN ORDERED SET,
i.e.
DO 100t =1,N

100°'WRITE (6,1) A (IPERM(I))

1 FORMAT (F 10.5)

WILL LIST A AS AN ORDERED ARRAY



Sheet D-8. Subroutine DISPLA Description (From NASA CR-2435)

TITLE: DISPLA — Prints scalars, vectors, rectangular matrices, packed symmetric matrices, and Hessenberg
matrices.

AUTHOR: M. J. Rossi

DATE: September 1973

APPLICABLE COMPUTERS: 18M 360/370; CDC 6000 SERIES
SOURCE LANGUAGE: FORTRAN 1V

PURPOSE: To simplify printing of mathematical types of data structures in an easily read format which allows
titles and index labels.

METHOD: FORTRAN looping and write statements which indexes and addresses arrays according to their type.

USAGE: Call DISPLA (X, NFILE, TITLE, KAR, KIND, NROWS, NCOLS, MID).

X — Input — Array of one or more values to be printed
NFILE — Input — FORTRAN unit for printing.
TITLE — input — Vector of KAR characters used as title.
KAR - Input — Number of characters in above string.
KIND — Input — Type of mathematical data structure:
= O scalar (or vector printed on one line with no index)
= 1 yector of INROWS) elements, indexed
= 2 Rectangular INROWS! by NCOLS matrix — Dimension (MID, *)
= 3 Packed Symmetric matrix of order INROWS |

— Jower triangular partial rows if NROWS positive

I
BN =

4
5
6
3
5] — lower triangular partial columns if NROWS negative
6

i
WN =
ABN OWN

= 4 — Transposed Hessenberg matrix of order NROWS — Dimension (MID, M!D)

NROWS — Input ~ Number of elements if KIND = 0 or 1
—~ Number of rows if KIND = 2
— Matrix order if KIND =3 or 4

NCOLS - lnput — Number of columns if KIND =2
— Ignored-otherwise
MID — Input — Matrix Dimension if KIND =2 or 4

— lgnored otherwise

SUBROUTINE REQUIRED: SWITCH
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Sheat D-9. Subroutine PART Descriptidn (From NASA CR-2435)

TITLE: PART — Prints standard 120 character labels at the top of the next page.

AUTHOR: M. J. Rossi

DATE: September 1973

APPLICABLE COMPUTERS: 18M 360/370; CDC 6000 SERIES

SOURCE LANGUAGE: FORTRAN |V with 2 Assembler Language Subordinate Subroutines.

PURPQOSE: To make it convenient to produce standard printed labels with “part” numbers, date, and running CPU

time on the top of the next page. Also, prints short line on next line with just CPU time for intermediate
timing. :
METHOD: On the first printing entry for a given computer run the Date Subroutine is invoked and an 8-character

field of an irtefnal word is stored with the date in the form: “"KK/LL/MM”, where KK is the index

number for the month,.LL is the day of the month, and MM is the last 2 digits of the year, e.g.,

March 15, 1973 3/15/73. Also, at this time, the SECOND subroutine is invoked to both

establish the zero time point and to set the units to hundreds of a second. Then the first printed page
. heading is given with a zero time and a PART number 1 reported. Subsequent printing calls will give
the time as: NN.I1.JJ where NN is the number of minutes elapsed, !l is the number of seconds, and
JJ is the number of hundredths of seconds. The PART number is incremented by one for each
printing call. There are two fields of alphameric information for the full printing mode which are under
contro! of the user: (1} The first is a 40 character LABEL field which is set upon calling PART in the
non-printing mode, {2) The second is a 48 character field which is supplied on a full printing call.
There is also a partial printing mode which simply results in the appearance on the next line of an 8
character field of user supplied TITLE along with running CPU time.

USAGE: CalL PART ('XX...X". 1)
;%X ..X" — Input = Alphameric string of either 8, 40, or 48 characters depending on the value of L.
by o~ kmut — FORTRAN unit for printing, if positive
- _—1f zero, simply sets 40 character LABEL field and returns
— 1f negative, prints 8 character TITLE — 'XX. . .X" — and CPU time on next line and
increments PART number.
— If positive, prints DATE, TIME, 40 character LABEL, 48 character TITLE, Part Number

and spacers with standard notation.

SUBROGAINE3Z'REQUIRED:  DATE, SECOND




Sheet D-10 Subroutine Switch Description {From NASA CR-2435)

PROGRAM TITLE: Utility routine for re-arrangement of certain triangular arrays

SUBROUTINE NAME: SWITCH INDEX: 12.6.0.1
ANALYST: F. Nolan

PROGRAMMER: F. Nolan DATE: June 15, 1967
DOCUMENTATION AUTHOR: F.Nolan DATE: June 20, 1873

SOURCE LANGUAGE: FORTRAN 1V
APPLICABLE COMPUTERS: 1BM Systems 360, 370; CDC 6000 series
REVISION: DATE:

PURPOSE: To provide a convenient conversion between two common arrangements for the storage of triangular
(and symmetric) matrices.

ANALYTIC DESCRIPTION: The routine makes systematic use of transpositions, i.e., interchanges of two array
elements. It is a well known result in permutation theory that every permutation can be represented
as a product of transpositions.

PROGRAM DESCRIPTION: There is no loss of generality in assuming that the input matrix is of lower triangular
form. It is natural to store such matrices by row or by column. Both arrangements are illustrated for
a matrix of order 5. The understanding is that the (4,3} element, for example, is assigned position 9
using row storage, and position 11 using column storage.

Row Storage Column Storage

1 1

2 3 2 6

4 5 6 3 7 10

7 8 9 10 4 8 11 13

11 12 13 14 15 5 9 12 14 15

Given a lower triangular or symmetric matrix, stored in either fashion, SWITCH can re-arrange it to the

other form. The re-arrangement is carried out "in place” in the sense that no auxiliary array is required.

For an input matrix of arder m, the transformation is performed in approximately %m? transpositions.
There are no rounding errors.

PROGRAM RESTRICTIONS: The matrix must be of order at least 3.

INPUT PARAMETERS:
FORTRAN Name Description
A Singly-dimensioned real array containing the matrix to be re-arranged.
M Order of matrix A. I M is given positive, conversion is from row to column

storage. |f M is given negative, conversion is from column to row storage.
OUTPUT PARAMETERS:
A Matrix in re-arranged order.
CALLING SEQUENCE:
CALL SWITCH (A, M)
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APPENDIX E

" DISCUSSION OF NONLINEARITIES AND TIME DEPENDENCY OF h AND T AW*

The heat conduction problem that CAVE solves generally contains nonlineari-

ties as a consequence of the material properties being temperature dependent and the

radiation heat transfer taking place at the surface of the structure. The problem

usually has the further complication of time varying boundary conditions by virtue of

hand T AW being time dependent. This appendix considers two questions: (1) how

should the nonlinearities be handled; and (2) how should the time dependence of h and

Taw be handled.

Considering the second question first, it is noted that the time dependence does

not destroy the linearity of the problem. However, in this case an eigenvalue solution

cannot be obtained by treating h¢) directly in the system of ordinary differential

-equations. This is seen by considering the restrictive case in which

h(y,t) =h (y) +hy (t)

If the semidiscrete problem has the following form (Refer to eq. A-1a)

dT _ . =
G = AMTHRE)  T(0)=T,

where for simplicity M is taken to be the identity matrix, then the diagonal elements
of A depend ont and the above assumption on the form of h(y,t) leads to

A(t)=A +a,(t)]

where a, (t) is a scalar time function and J is a diagonal matrix with ones and zeros.

In this case
Alty) Alty) # Alty) Aty)

which therefore precludes an eigenvalue/eigenfunction solution.

*This appendix courtesy of Michael J. Rossi.
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Therefore, since the eigenvalue solution does not exist for even this restrictive
form on h(y, t), the recommendation then is to subdivide the time interval and take h
and T AW to be piecewise constant within each subinterval. Returning to the first of
the two questions posed, we see another motive for subdividing the time interval. If
the subdivision for h and T AW produces short enough intervals one may account for
the temperature-dependent properties and radiation terms by taking them to be piece~-
wise constant depending on the temperature at the beginning of each subinterval. One
must caution, however, against taking time subintervals which are so short as to
require too large a number of eigenvalues and eigenfunctions in order to ensure an
accurate solution of the resulting subproblems. The best approach might be to first
predict the temperature history on a subinterval based on a time-invariant linear
model, and then_ to correct the solution by considering a forcing term to account for
the total neglected effects of radiation, temperature dependent thermal properties,

and time~dependent convection,
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APPENDIX F.
DERIVATION OF SOLUTION TO THE EQUATION M’£ =BT +F
This appendix presents a step~by-step solution to the vector equation
MT =BT +F Eq. (F-1)

which represents the temperature response within a body that has been discretized
into a number of uniform temperature systems or nodes that are coupled and changing
in temperature. The elements of the diagonal matrix M represent the mass-specific
heat product of each system or node; the elements of the matrix B represent the
convective~-conductive couplings between nodes; and the elements of the vector F
represent the product of the convective couplings with the corresponding fluid
adiabatic wall temperature (or recovery temperature). And, of course, the elements
of the vector T represent the instantaneous temperatures of the nodes; the

elements of the vector I the time rate of change of the temperatures. Specifically,
for the four node system shown in Figure F-1:

B 7]
(pVCp)_.l 0 0 0
0 vC 0 0
(p p)2
M=
0 0 (,;.ch)3 0
0 0 0 VC.)
| (o P4J
e )
T
Ty
T= <.}
Ty
T
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I

and

1=
I

where,

Q < v

i e]

~ e

AXij

Taw

-(H+K K

12) 12

K2 ~(Ky9*Kyg)

23

= mass density

0 0 ]
Koq 0
~(KggtK3q) K34
K34 K3q |

= volume associated with node

= gpecific heat.

= convective coupling, hA

= convective heat fransfer coefficient

= heat transfer area

= conductive coupling betweennodes i and j,kA/ AXiJ.

= thermal conductivity

= conduction distance between nodes i and j

= adiabatic wall temperature of fluid




To obtain the solution to the Eq. (F-1), we premultiply both sides of (¥-1) by
the inverse of M and obtain

T= M’]*Bg + M F Eq. (F-2)

If we define a symmetric matrix A by

A =M Y 2y /2 Eq. (F-3)
. o35 nps -1/2 T 1/2

we obtain after premultiplication of Eq. (F-3) by M and postmultiplication by M
M Y2 a2 =1 Eq. (F-4)

After substituting Eq. (F-4) into Eq. (F-2) and defining a matrix N for convenience in

writing by

N = w21/ 2 Eq. (F-5)
we get

T=NT+M 'E Eq. (F-6)
We now assume that the solution to Eq. (F-1) can be expressed as

T= 06 (t) + T Eq. (F-T)

where © is a vector having time-dependent components and T, is a vector that is
independent of time. (Physically, :1‘_00 represents the steady-state temperatures that
the system will achieve.)

Substitution of Eq. (F-7) into Eq. (¥-6) yields:

6=N@ +NT_+M F Eq. (F-8)
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-1_
NT _+M F=0 Eq. (F-9)

Therefore, we have

—

-1/2 -1 -1/2
T, =-M /A M /E Eq. (F-10)
Then with Ew satisfying Eq. (F-9), Eq. (F-8) becomes

6=N6

which has the solution*

tN

§=e Eq. (F-11)

Qo
Returning to Eq. (F-7), we have after substituting Eq. (F-11)

T=eNg 47 Eq. (F-12)

=0 =0
To evaluate © o We use the initial condition
I(O)=1I;
thus
8,=T%;-T,

which gives upon substitution into eq. (F-12)

-nl —

_ N
T=e .[T. Tw] +T_ Eq. (F-13)

*See for example Hochstadt, "Differential Equations,' Holt, Rinehart and Winston,
pp 55-58.
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Eq. (¥-13) is the solution to Eq. (F-1) along with the initial condition;
however, from a computationa). standpoint Eq. (¥-13) is not convenient because
evaluation of the exponential term requires summing an infinite power series in

the matrix N,

We now develop a more convenient form for Eq. (F~13), Recalling the definition
of N from Eq. (F-5)

1/2 1/2

N_=M’ AM

we see that

N2 = Y22y V2 a0l = oY/ 2 52012

and, in general, that

N = mV2pd /2

Therefore, the Taylor series
N_ & PN
e — ane———
z it
j=o
can be wriiten

- D, A
ofN = 1/2 z val 172

it

j=0
which leads to the result

1/2 1/2

N _ tM AM™T _ =1/2 tA L 1/2

e Eq. (F-14)

Because the matrix A is a symmetric matrix we can find a matrix V such that

-1
V AV =A Eq. (F-15)
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=

where A is a diagonal matrix formed with the eigenvalues of A¥ The matrix V can be
selected to be orthogonal, that is, it is a matrix whose columns comprise the elements
of n linearly independent eigenvectors of matrix A that are mutually orthogonal and of
unit length.

From Eq. (F-15) we have
A=vav?

which when substituted into Eq. (F-14) yields

N = V2 y ot 112 Eq. (F-16)

where we have made use of the identity

tVAV™Y _ _ tA -1
e =ve

v A%

The representation for etN given in Eq. (F-16) is convenient since A is a
diagonal matrix and therefore the exponential term is easily and explicitly evaluated
as follows:

-
et)\ 1 ]
etAz

etA

where the A's are the eigenvalues of matrix A.

*cf. Hildebrand, "Methods of Applied Mathematics,' Prentice-hall, pp. 37-39.
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Substituting Eq (F-16) into Eq. (F-13) we obtain the final form for thé
solution to equation (F-1)

T =M Y2 yethyTyl/2 [Ii - Ioo] +T_ Eq. (F-17)
where we have made use of the property that for normalized modal matrices, the trans-

. pose of the matrix equals the inverse of the matrix, i.e.,

VT - V-l

Equation (F-17) is Eq. (9) of NASA CR-2435 by Maise and Rossi; it forms the
basis of the HAN method.

It should be noted that for a system with n nodes or elements the matrix V will
have n columns of eigenvectors and the matrix A will have n eigenvalues along the
diagonal. As noted in NASA CR-2435, good approximate solutions for T are obtained
by finding and using only the "dominant" eigenvectors and eigenvalues of A. Large
savings in computer time (factor of ten or more) are achieved by finding and using

only say 5 dominant eigenvectors and eigenvalues for a system of 100 nodes or more.
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